Что такое звезда в космосе определение, виды звезд, интересные факты, из чего состоит небесный объект, какую форму имеет космическая звезда, классификация в астрономии, происхождение названий

Звезды

Звезды – небесные тела и гигантские светящиеся сферы плазмы. Только в нашей галактике Млечный Путь их насчитывают миллиарды, включая Солнце. Не так давно мы узнали, что некоторые из них еще и располагают планетами.

История наблюдений за звездами

Сейчас можно легко купить телескоп и наблюдать на ночным небом или воспользоваться телескопами онлайн на нашем сайте. С древних времен звезды на небе играли важную роль во многих культурах. Они отметились не только в мифах и религиозных историях, но и послужили первыми навигационными инструментами. Именно поэтому астрономия считается одной из древнейших наук. Появление телескопов и открытие законов движения и гравитации в 17 веке помогли понять, что все звезды напоминают наше Солнце, а значит подчиняются тем же физическим законам.

Фотография умирающей звезды. Изображение получено космическим телескопом Хаббл

Изобретение фотографии и спектроскопии в 19 веке (исследование длин волн света, исходящих от объектов) позволили проникнуть в звездный состав и принципы движения (создание астрофизики). Первый радиотелескоп появился в 1937 году. С его помощью можно было отыскать невидимое звездное излучение. А в 1990 году удалось запустить первый космический телескоп Хаббл, способный получить наиболее глубокий и детализированный взгляд на Вселенную (качественные фото Хаббла для различных небесных тел можно найти на нашем сайте).

Наименование звезд Вселенной

Древние люди не обладали нашими техническими преимуществами, поэтому в небесных объектах узнавали образы различных существ. Это были созвездия, о которых сочиняли мифы, чтобы запомнить названия. Причем практически все эти имена сохранились и используются сегодня.

В современном мире насчитывается 88 созвездий (среди них 12 относятся к зодиакальным). Самая яркая звезда получает обозначение «альфа», вторая – «бета», а третья – «гамма». И так продолжается до конца греческого алфавита. Есть звезды, которые отображают части тела. Например, ярчайшая звезда Ориона Бетельгейзе (Альфа Ориона) – «рука (подмышка) великана».

Красный сверхгигант Бетельгейзе

Не стоит забывать, что все это время составлялось множество каталогов, чьи обозначения используют до сих пор. Например, Каталог Генри Дрейпера предлагает спектральную классификацию и позиции для 272150 звезд. Обозначение Бетельгейзе – HD 39801.

Но звезд на небе невероятно много, поэтому для новых используют аббревиатуры, обозначающие звездный тип или каталог. К примеру, PSR J1302-6350 – пульсар (PSR), J – используется система координат «J2000», а последние две группы цифр – координаты с кодами широты и долготы.

Звезды все одинаковые? Ну, когда наблюдаешь без использования техники, то они лишь слегка отличаются по яркости. Но ведь это всего лишь огромные газовые шары, так? Не совсем. На самом деле, у звезд есть классификация, основанная на их главных характеристиках.

Среди представителей можно встретить голубых гигантов и крошечных коричневых карликов. Иногда попадаются и причудливые звезды, вроде нейтронных. Погружение во Вселенную невозможно без понимания этих вещей, поэтому давайте познакомимся со звездными типами поближе.

Типы звезд Вселенной

Это то, что мы видим до появления полноценной звезды. Протозвезда представляет собою скопление газа, рухнувшего от молекулярного облака. Эволюционная фаза занимает примерно 100000 лет. Дальше гравитация набирает силу, и заставляет образование разрушаться. Гравитация накаляет газ и вынуждает его выделять энергию.

Этот момент идет перед переходом в звезду главной последовательности. Наступает в завершении протозвезды, когда энергию дарит только разрушающая ее гравитационная сила. У таких звезд еще нет достаточного нагрева и давления, чтобы активировать процесс ядерного синтеза. На звездах типа Т Тельца можно заметить огромные пятна, вспышки рентгеновского излучения и мощные порывы ветров. Эта стадия охватывает 100000 миллионов лет.

Большая часть вселенских звезд находится в стадии главной последовательности. Можно вспомнить Солнце, Альфа Центавра А и Сирус. Они способны кардинально отличаться по масштабности, массивности и яркости, но выполняют один процесс: трансформируют водород в гелий. При этом производится огромный энергетический всплеск.

Такая звезда переживает ощущение гидростатического баланса. Гравитация заставляет объект сжиматься, но ядерный синтез выталкивает его наружу. Эти силы работают на уравновешивании, и звезде удается сохранять форму сферы. Размер зависит от массивности. Черта – 80 масс Юпитера. Это минимальная отметка, при которой возможно активировать процесс плавления. Но в теории максимальная масса – 100 солнечных.

Когда звезда полностью израсходует внутреннее топливо, то больше не может создавать внешнее давление, а значит не противодействует внутреннему. Звезда сжимается, а оболочка вокруг ядра воспламеняется, продлевая ей жизнь, но увеличивая в размере. Звезда трансформируется в красного гиганта и может быть в 100 раз крупнее, чем представитель в главной последовательности. Когда не остается водорода, начинает гореть гелий и даже более тяжелые элементы. На этот этап уходит несколько сотен миллионов лет.

Если топлива нет, то у звезды больше не хватает массы, чтобы продлить ядерный синтез. Она превращается в белого карлика. Внешнее давление не работает, и она сокращается в размерах из-за силы тяжести. Карлик продолжает сиять, потому что все еще остаются горячие температуры. Когда он остынет, то обретет фоновую температуру. На это уйдут сотни миллиардов лет, поэтому пока просто невозможно найти ни единого представителя.

Это наиболее распространенный вид. Перед нами звезда главной последовательности с низкой массой, из-за чего значительно уступает в температуре Солнцу. Но выигрывает за счет продолжительности жизни. Дело в том, что им удается расходовать топливо в медленных темпах, поэтому отличаются значительной экономией. Наблюдения говорят, что такие объекты способны просуществовать до 10 триллионов лет. Наименьшие экземпляры достигают всего 0.075 раз солнечной массы, но могут набирать и 50%.

Когда звезда в 1.35-2.1 раз больше солнечной массы, то не завершает существование в виде белого карлика, а освещает небо взрывом сверхновой. После этого остается ядро, которое и выступает нейтронной звездой. Это очень интересный объект, так как всецело представлен нейтронами. Дело в том, что мощная гравитационная сила сжимает протоны и электроны, формирующие нейтроны. Если масса звезды была еще больше, то перед нами развернется черная дыра.

Читайте также:
Созвездие Стрелец ♐ описание и информация о том, как выглядит, история названия, схема и вид на ночном небе, интересные факты о самых ярких звездах, легенды

Наиболее крупные звезды называют сверхгигантами. Они в десятки раз больше солнечной массы, но им не так уж и повезло: чем больше размер, тем короче жизнь. Они стремительно расходуют внутреннее топливо (несколько миллионов лет). Поэтому проживают короткую жизнь и умирают как сверхновые.

Как вы поняли, существуют различные виды звезд. Понимание этого, поможет вам разобраться в эволюционной стадии объекта и даже понять, что его ждет.

Коричневыми карликами называют объекты, которые слишком крупные для планет, но и чересчур маленькие для звезд. Их масса начинается с двойной Юпитера и может достигать 0.08 солнечной. Формируются как и обычные звезды – из коллапсирующего газового и пылевого облака. Но им не хватает температуры и давления, чтобы запустить ядерный синтез. Долгое время их считали всего лишь теоретическими объектами, пока в 1995 году не нашли первый экземпляр.

Цефеиды – звезды, пережившие эволюцию из главной последовательности к полосе неустойчивости Цефеиды. Это обычные радио-пульсирующие звезды с заметной связью между периодичностью и светимостью. За это их ценят ученые, ведь они являются превосходными помощниками в определении дистанций в пространстве.

Они также демонстрируют перемены лучевой скорости, соответствующие фотометрическим кривым. У более ярких наблюдается длительная периодичность.

Классические представители – сверхгиганты, чья масса в 2-3 раза превосходит солнечную. Они пребывают в моменте сжигания топлива на этапе главной последовательности и трансформируются в красных гигантов, пересекая линию неустойчивости цефеид.

Если говорить точнее, то понятие «двойная звезда» не отображает реальную картинку. На самом деле, перед нами звездная система, представленная двумя звездами, совершающими обороты вокруг общего центра масс. Многие совершают ошибку и принимают за двойную звезду два объекта, которые кажутся расположенными близко при наблюдении невооруженным глазом.

Ученые извлекают из этих объектов пользу, потому что они помогают вычислить массу отдельных участников. Когда они передвигаются по общей орбите, то вычисления Ньютона для гравитации позволяют с невероятной точностью рассчитать массу.

Можно выделить несколько категорий в соответствии с визуальными свойствами: затмевающие, визуально бинарные, спектроскопические бинарные и астрометрические.

Затмевающие – звезды, чьи орбиты создают горизонтальную линию от места наблюдения. То есть, человек видит двойное затмение на одной плоскости (Алголь).

Визуальные – две звезды, которые можно разрешить при помощи телескопа. Если одна из них светит очень ярко, то бывает сложно отделить вторую.

Формирование звезды

Давайте внимательнее изучим процесс рождения звезды. Сначала мы видим гигантское медленно вращающееся облако, наполненное водородом и гелием. Внутренняя гравитация заставляет его сворачиваться внутрь, из-за чего вращение ускоряется. Внешние части трансформируются в диск, а внутренние в сферическое скопление. Материал разрушается, становясь горячее и плотнее. Вскоре появляется шарообразная протозведа. Когда тепло и давление вырастают до 1 миллиона °C, атомные ядра сливаются и зажигается новая звезда. Ядерный синтез превращает небольшое количество атомной массы в энергию (1 грамм массы, перешедший в энергию, приравнивается к взрыву 22000 тонн тротила). Посмотрите также объяснение на видео, чтобы лучше разобраться в вопросе звездного зарождения и развития.

Звездная эволюция

Основываясь на массе звезды, можно определить весь ее эволюционный путь, так как он проходит по определенным шаблонным этапам. Есть звезды промежуточной массы (как Солнце) в 1.5-8 раз больше солнечной массы, более 8, а также до половины солнечной массы. Интересно, что чем больше масса звезды, тем короче ее жизненный срок. Если она достигает меньше десятой части солнечной, то такие объекты попадают в категорию коричневых карликов (не могут зажечь ядерный синтез).

Объект с промежуточной массой начинает существование с облака, размером в 100000 световых лет. Для сворачивания в протозвезду температура должна быть 3725°C. С момента начала водородного слияния может образоваться Т Тельца – переменная с колебаниями в яркости. Последующий процесс разрушения займет 10 миллионов лет. Дальше ее расширение уравновесится сжатием силы тяжести, и она предстанет в виде звезды главной последовательности, получающей энергию от водородного синтеза в ядре. Нижний рисунок демонстрирует все этапы и трансформации в процессе эволюции звезд.

Этапы эволюции звезды

Когда весь водород переплавится в гелий, гравитация сокрушит материю в ядро, из-за чего запустится стремительный процесс нагрева. Внешние слои расширяются и охлаждаются, а звезда становится красным гигантом. Далее начинает сплавляться гелий. Когда и он иссякает, ядро сокращается и становится горячее, расширяя оболочку. При максимальной температуре внешние слои сдуваются, оставляя белый карлик (углерод и кислород), температура которого достигает 100000 °C. Топлива больше нет, поэтому происходит постепенно охлаждение. Через миллиарды лет они завершают жизнь в виде черных карликов.

Процессы формирования и смерти у звезды с высокой массой происходят невероятно быстро. Нужно всего 10000-100000 лет, чтобы она перешла от протозвезды. В период главной последовательности это горячие и голубые объекты (от 1000 до миллиона раз ярче Солнца и в 10 раз шире). Далее мы видим красного сверхгиганта, начинающего сплавлять углерод в более тяжелые элементы (10000 лет). В итоге формируется железное ядро с шириною в 6000 км, чье ядерное излучение больше не может противостоять силе притяжения.

Когда масса звезды приближается к отметке в 1.4 солнечных, электронное давление больше не может удерживать ядро от крушения. Из-за этого формируется сверхновая. При разрушении температура поднимается до 10 миллиардов °C, разбивая железо на нейтроны и нейтрино. Всего за секунду ядро сжимается до ширины в 10 км, а затем взрывается в сверхновой типа II.

Туманность Эскимоса – один из последних этапов эволюции небольшой звезды

Читайте также:
Планета Сатурн - описание колец, радиус и размеры, атмосфера

Если оставшееся ядро достигало меньше 3-х солнечных масс, то превращается в нейтронную звезду (практически из одних нейтронов). Если она вращается и излучает радиоимпульсы, то это пульсар. Если ядро больше 3-х солнечных масс, то ничто не удержит ее от разрушения и трансформации в черную дыру.

Звезда с малой массой тратит топливные запасы так медленно, то станет звездой главной последовательности только через 100 миллиардов – 1 триллион лет. Но возраст Вселенной достигает 13.7 миллиардов лет, а значит такие звезды еще не умирали. Ученые выяснили, что этим красным карликам не суждено слиться ни с чем, кроме водорода, а значит, они никогда не перерастут в красных гигантов. В итоге, их судьба – охлаждение и трансформация в черные карлики.

Двойные звезды

Мы привыкли, что наша система освещается исключительно одной звездой. Но есть и другие системы, в которых две звезды на небе вращаются по орбите относительно друг друга. Если точнее, только 1/3 звезд, похожих на Солнце, располагаются в одиночестве, а 2/3 – двойные звезды. Например, Проксима Центавра – часть множественной системы, включающей Альфа Центавра А и B. Примерно 30% звезд в Млечной Пути многократные.

Двойная звезда в Большой Медведице

Этот тип формируется, когда две протозвезды развиваются рядом. Одна из них будет сильнее и начнет влиять гравитацией, создавая перенос массы. Если одна предстанет в виде гиганта, а вторая – нейтронная звезда или черная дыра, то можно ожидать появления рентгеновской двойной системы, где вещество невероятно сильно нагреется – 555500 °C. При наличии белого карлика, газ из компаньона может вспыхнуть в виде новой. Периодически газ карлика накапливается и способен мгновенно слиться, из-за чего звезда взорвется в сверхновой типа I, способной затмить галактику своим сиянием на несколько месяцев.

Характеристика звезд

Для описания яркости звездных небесных тел используют величину и светимость. Понятие величины основывается еще на работах Гиппарха в 125 году до н.э. Он пронумеровал звездные группы, полагаясь на видимую яркость. Самые яркие – первая величина, и так до шестой. Однако расстояние между Землей и звездой способно влиять на видимый свет, поэтому сейчас добавляют описание фактической яркости – абсолютная величина. Ее вычисляют при помощи видимой величины, как если бы она составляла 32.6 световых лет от Земли. Современная шкала величин поднимается выше шести и опускается ниже единицы (видимая величина Сириуса достигает -1.46). Ниже можете изучить список самых ярких звезд на небе с позиции наблюдателя Земли.

Что такое звезда в космосе?

Каждому человеку приходилось хотя бы раз в жизни рассматривать звездное небо, поражаясь его великолепию. Городским жителям такие случаи выпадают не слишком часто: обычно огни уличных фонарей и рекламы мешают смотреть на небо ночью, так как на их фоне звезды кажутся маленькими и тусклыми. В этой статье мы узнаем, что такое звезда в космосе.

Но стоит выехать за город, где нет вездесущего ночного освещения – и первый же вечер приносит поразительное открытие: так вот как, оказывается, на самом деле выглядят звезды. Приходилось ли вам задумываться о том, что такое звезды в космосе, кому и для чего они нужны?

Что означает слово «звезда»?

В русском языке слово «звезда» имеет несколько смыслов. Оно может означать:

  • светящуюся точку, видимую на ночном небе;
  • в астрономии – небесное тело с определенными параметрами;
  • геометрическую фигуру на плоскости, составленную из нескольких треугольных лучей, исходящих из одного центра;
  • морское беспозвоночное животное характерной звездообразной формы; в переносном смысле – известного человека публичной профессии – артиста, певца, музыканта;
  • в переносном смысле – удачу, счастье, предопределенное судьбой.

Что такое звезда?

Говоря о звезде как о небесном теле, наука подразумевает под этим словом светящийся раскаленный сгусток материи огромной массы, в котором протекают активные термоядерные процессы. Кстати, за счет этих процессов поддерживается тепловое и световое излучение звезд, благодаря чему мы можем видеть их в ночное время.

Звезды находятся от нас на очень больших расстояниях, поэтому кажутся нам такими маленькими. Но в реальности большинство видимых на небе звезд по массе и объему намного больше, чем наше Солнце (которое тоже является звездой класса «желтый карлик»).

Между прочим, человек с хорошим зрением может рассмотреть на небе около 3 000 звезд, общее же их количество во Вселенной, скорее всего, бесконечно. Звезды в космосе сгруппированы в огромные скопления – галактики, имеющие форму спирали с двумя или несколькими рукавами.

Какие виды звёзд бывают?

Во времена, когда единственным прибором, доступным астрономам, был оптический телескоп, критерием для классификации звезд была их яркость.

Сразу же, как только появилась возможность получать спектры звезд, была разработана классификация. Она базируется на спектральном анализе. Она гораздо лучше характеризует звезды, так как дает возможность выяснить их химический состав, массу и стадию развития.

Согласно спектральному составу все звезды разбиваются на классы в зависимости от их температуры. Каждому классу присвоена буква латинского алфавита. К самому высокому классу О относят наиболее горячие звезды, температура которых достигает 30-60 тысяч градусов Кельвина. Далее с понижением температуры следуют классы B, A, F, G. Буквами от М до Т обозначают светила, температура которых ниже 2-3,5 тысяч градусов Кельвина.

Кроме того, астрономы различают следующие виды звезд:

  • коричневый карлик – звезда, в которой ядерные процессы недостаточно интенсивны для того, чтобы компенсировать потери энергии от излучения;
  • белый карлик – звезда в фазе перестройки структуры. В результате перестройки осуществляется переход в состояние нейтронной звезды либо черной дыры;
  • красный гигант – звезда с невысокой плотностью и огромным объемом и светимостью, наиболее интенсивно излучающая в инфракрасной части спектра;
  • переменная звезда – светило с переменной интенсивностью излучения;
  • двойная звезда – светило, состоящее из двух шаров раскаленного газа, сходных по массе. Кстати, они вращаются по сложной траектории друг относительно друга и составляют единое целое;
  • новая или сверхновая звезда – светило, цикл развития которого подошел к концу. Он заканчивается взрывом с резким, но кратковременным многократным увеличением яркости;
  • нейтронная звезда – светило на поздней стадии эволюции, находящееся на стадии сжатия ядра. Поэтому она излучает не световые волны, а излучение в нейтронном, рентгеновском или радиодиапазоне;
  • черная дыра – звезда, процесс сжатия ядра которой достиг стадии, в которой ее гравитационное поле у поверхности настолько сильно, что не выпускает наружу даже излучение.
Читайте также:
Почему мерцают звезды - причины, особенности отражения, названия

Из чего состоят звёзды?

Любая звезда, которую мы видим на ночном небе, представляет собой раскаленный газовый шар. Невероятно большая масса приводит к тому, что на газ действуют чудовищной силы гравитационные поля. Под их действием он сжимается.

В центре звезды, который называется ядром, сила сжатия запускает термоядерный процесс. В результате выделеляется огромное количество энергии. Но при этом на поверхности температура составляет несколько тысяч или десятков тысяч градусов Кельвина. А внутри она исчисляется миллионами градусов.

Кстати, газ, из которого состоят звезды – это водород. В ходе термоядерной реакции он преобразуется в гелий и другие химические элементы. Молодые звезды, жизненный цикл которых начался относительно недавно, содержат совсем немного гелия.

Кроме того, в составе газа и плазмы может присутствовать небольшое количество металлов. В результате они оказывают существенное влияние на скорость протекающих в ядре процессов синтеза. Чем старше звезда, тем больше в ее составе химических элементов.

Для чего нужны звёзды?

Звёзды – преобладающие во Вселенной небесные тела. Они генерируют световую и тепловую энергию, которая в виде излучения распространяется в космосе. Центр нашей звездной системы, Солнце, является источником жизни и тепла для нашей Земли.

Вполне возможно, что у многих звезд в нашей и в других Галактиках тоже имеются планеты. Кроме того, на них, возможно, зародилась и развивается жизнь.

Если бы Солнце вдруг погасло или исчезло, вся жизнь на Земле погибла бы от холода в течение двух-трех недель.

Звезда (астрономия)

Другие значения слова «звезда» см. в статье Звезда (значения).

Звезда́ — небесное тело, в котором происходят, происходили или будут происходить ядерные реакции. Но чаще всего звездой называют небесное тело, в которой идут в данный момент ядерные реакции. Солнце — типичная звезда спектрального класса G. Звёзды представляют собой массивные светящиеся газовые (плазменные) шары. Образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами Кельвинов, а на их поверхности — тысячами Кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Примечательно и то, что звезды имеют отрицательную теплоемкость [1] .

Ближайшей к Земле звездой (не считая Солнца) является Проксима Центавра. Она расположена в 4,2 св. лет от нашей Солнечной системы ( 4,2 св. лет = 39 Пм = 39 триллионов км = 3,9 × 10 13 км ). См. также список ближайших звёзд.

Невооружённым взглядом на небе видно около 6000 звёзд, по 3000 в каждом полушарии. Все видимые с Земли звёзды (включая видимые в самые мощные телескопы) находятся в местной группе галактик.

Содержание

Единицы измерения

Большинство звёздных характеристик как правило выражается в СИ, но также используется и СГС (например, светимость выражается в эргах в секунду). Масса, светимость и радиус обычно даются в соотношении с нашим Солнцем:

солнечная масса: кг
солнечная светимость: Вт
солнечный радиус: м

Для обозначения расстояния до звёзд приняты такие единицы как световой год и парсек

Большие расстояния, такие как радиус гигантских звёзд или большая полуось двойных звёздных систем часто выражаются с использованием астрономической единицы ( а. е. ) — среднее расстояние между Землёй и Солнцем ( 150 млн км ).

Физические характеристики

Массы подавляющего большинства современных звёзд лежат в пределах от 0,071 масс Солнца (75 масс Юпитера) до 100—150 масс Солнца, возможно, первые звёзды были ещё более массивными. Температура в недрах звёзд достигает 10—12 млн К.

Расстояние

Существуют множество способов определить расстояние до звезды. Но наиболее точный и основой для всех остальных методов является метод измерения параллаксов звёзд. Первым измерил расстояние до звезды Веги российский астроном Василий Яковлевич Струве в 1837 году. Определение параллаксов с поверхности Земли позволяет измерить расстояния до 100 парсек, а со специальных астрометрических спутников, таких как Hipparcos, — до 1000 пк. Если звезда входит в состав звездного скопления, то мы не сильно ошибемся, если примем расстояние до звезды равным расстоянию до скопления. Если звезда принадлежит к классу цефеид, то расстояние можно найти из зависимости период пульсации — абсолютная звездная величина. В основном, для определения расстояния до далеких звёзд используется фотометрия [2] [3] .

Масса

Достоверно определить массу звезды можно, только если она является компонентом двойной звезды. В этом случае массу можно вычислить, используя обобщенный третий закон Кеплера. Но даже при этом оценка погрешности составляет от 20 % до 60 % и, в значительной степени, зависит от погрешности определения расстояния до звезды. Во всех прочих случаях приходится определять массу по косвенным признакам, например, зависимости светимости и массы звезды. [4] .

Химический состав

Крайне важной характеристикой является ее химический состав, как с точки зрения звезды, так и с точки зрения наблюдателя. И хотя доля элементов тяжелее гелия исчисляется не более чем несколько процентов, но они играют важную роль в жизни звезды. Благодаря им ядерные реакции могут замедляться или ускорятся, а это отразиться как на яркости, звезды, так и на цвете, так и на продолжительности жизни. Так чем больше металличность массивной звезды, тем меньше будет остаток при взрыве сверхновой. Наблюдатель, зная химический состав звезды, может довольно уверенно сказать время образования звезды. Так как все те трагические изменения, происходящие со звездой на протяжении ее жизни, не касаются поверхности звезды. Это всегда так мало массивных и средне массивных звезд, и почти всегда для массивных звезд.

Читайте также:
Венера планета - поверхность, как выглядит, интересные факты

Строение звёзд

Возникновение и эволюция звёзд

Звезда начинает свою жизнь как холодное разреженное облако межзвёздного газа, сжимающееся под действием собственного тяготения. При сжатии энергия гравитации переходит в тепло, и температура газовой глобулы возрастает. Когда температура в ядре достигает нескольких миллионов Кельвинов, начинаются термоядерные реакции и сжатие прекращается. В таком состоянии звезда пребывает большую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга — Рассела, пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превратится в гелий, термоядерное горение водорода продолжается на периферии гелиевого ядра.

В этот период структура звезды начинает заметно меняться. Её светимость растёт, внешние слои расширяются, а внутрениие наоборот, сжимаются. И до поры до времени яркость звезды тоже понижается. Температура поверхности снижается — звезда становится красным гигантом. На ветви гигантов звезда проводит значительно меньше времени, чем на главной последовательности. Когда масса её изотермического гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; возрастающая при этом температура стимулирует термоядерное превращение гелия в более тяжёлые элементы.

Белые карлики и нейтронные звёзды

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и её быстрое перемещение по диаграмме Герцшпрунга — Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик (маломассивные звёзды), в случае, если её масса на поздних стадиях эволюции превышает предел Чандрасекара — как нейтронная звезда (пульсар), если же масса превышает предел Оппенгеймера — Волкова — как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями — вспышками сверхновых.

Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

У звёзд более массивных, чем Солнце, давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны, упакованные так плотно, что размер звезды измеряется километрами, а плотность в 280 трлн. раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Чёрные дыры

У звёзд более массивных, чем предшественники нейтронных звёзд, ядра испытывают полный гравитационный коллапс. По мере сжатия такого объекта сила тяжести на его поверхности возрастает настолько, что никакие частицы и даже свет не могут её покинуть, — объект становится невидимым. В его окрестности существенно изменяются свойства пространства-времени; их может описать только общая теория относительности. Такие объекты называют чёрными дырами.

Схема эволюции одиночных звёзд

горение водорода в ядре

невырожд. He ядро

спокойное горение гелия в ядре

CO белый карлик

горение углерода в ядре. C в O, Ne, Si, Fe, Ni..

O,Ne,Mg… белый карлик или нейтронная звезда

чёрная дыра

Продолжительность эволюции звёзд

Классификация звёзд

Звёзды классифицируют по светимости, массе, температуре поверхности, химическому составу, особенностям спектра (спектральному классу) и кратности.

Кратные звёзды

Звёздные системы могут быть одиночными и кратными: двойными, тройными и большей кратности. В случае если в систему входит более десяти звёзд то принято её называть звёздным скоплением . Двойные (кратные) звёзды очень распространены. По некоторым оценкам более 70% звёзд в галактике кратные [5] . Так среди 32 ближайших к Земле звёзд 12 кратных из которых 10 двойных в том числе и самая яркая из визуально наблюдаемых звёзд Сириус. В окрестностях 20 парсек от Солнечной системы из более 3000 звёзд, около половины — двойные звёзды всех типов [6]

Обозначения звёзд

В нашей галактике более 100 млрд. звёзд. На фотографиях неба, полученных крупными телескопами, видно такое множество звёзд, что бессмысленно даже пытаться дать им всем имена или хотя бы сосчитать их. Около 0,01 % всех звёзд Галактики занесено в каталоги. Таким образом, подавляющее большинство звёзд, наблюдаемых в крупные телескопы, пока не обозначено и не сосчитано.

Самые яркие звёзды у каждого народа получили свои имена. Многие из ныне употребляющихся, например, Альдебаран, Алголь, Денеб, Ригель и др., имеют арабское происхождение; культура арабов послужила мостом через интеллектуальную пропасть, отделяющую падение Рима от эпохи Возрождения.

В прекрасно иллюстрированной Уранометрии (Uranometria, 1603) немецкого астронома И. Байера (1572—1625), где изображены созвездия и связанные с их названиями легендарные фигуры, звёзды были впервые обозначены буквами греческого алфавита приблизительно в порядке убывания их блеска: α — ярчайшая звезда созвездия, β — вторая по блеску, и т. д. Когда не хватало букв греческого алфавита, Байер использовал латинский. Полное обозначение звезды состояло из упомянутой буквы и латинского названия созвездия. Например, Сириус — ярчайшая звезда в созвездии Большого Пса (Canis Major), поэтому его обозначают как α Canis Majoris, или сокращённо α CMa; Алголь — вторая по яркости звезда в Персее обозначается как β Persei, или β Per. Байер, однако, не всегда следовал введенному им правилу, и в байеровских обозначениях есть большое количество исключений.

Читайте также:
Луна - радиус и диаметр спутника Земли и скорость обращения

Джон Флемстид (1646—1719), первый Королевский астроном Англии, ввёл систему обозначения звёзд, не связанную с их блеском. В каждом созвездии он обозначил звёзды номерами в порядке увеличения их прямого восхождения, то есть в том порядке, вкотором они пересекают меридиан. Так, Арктур, он же a Волопаса (α Bootes), обозначен как 16 Bootes.

Некоторые необычные звёзды иногда называют именами астрономов, впервые описавших их уникальные свойства. Например, звезда Барнарда названа в честь американского астронома Э. Барнарда (1857—1923), а звезда Каптейна — в честь нидерландского астронома Я. Каптейна (1851—1922). На современных картах звёздного неба обычно нанесены древние собственные имена ярких звёзд и греческие буквы в системе обозначений Байера (его латинские буквы используют редко); остальные звёзды обозначают согласно Флемстиду. Но не всегда на картах хватает места для этих обозначений, поэтому обозначения остальных звёзд нужно искать в звёздных каталогах.

Для переменных звёзд используется свой способ обозначения. Такие звёзды обозначают в порядке их обнаружения в каждом созвездии. Первую обозначают буквой R, вторую — S, затем T и т. д. После Z идут обозначения RR, RS, RT и т. д. После ZZ идут AA и т. д. (Букву J не используют, чтобы не было путаницы с I.) Когда все эти комбинации истощаются (всего их 334), то продолжают нумерацию цифрами с буквой V (variable — переменный), начиная с V335. Например: S Car, RT Per, V557 Sgr.

Также необходимо подчеркнуть, что никаких официально присвоенных имён у звёзд не существует, лишь по сложившейся традиции, поддерживаемой астрономами, около 300 ярких звёзд имеют собственные имена. В связи с этим, выдаваемые некоторыми организациями сертификаты о наименовании звёзд являются частной инициативой и не признаются Международным астрономическим союзом [7] [8] [9] .

Реакции термоядерного синтеза в недрах звёзд

Реакции термоядерного синтеза элементов — основной источник энергии большинства звёзд.

Звезды Что такое, описание, виды, характеристика, фото и видео

Вид звездного неба завораживает. Кажется, что им можно любоваться бесконечно. Столько там таинственности и загадочности. Но что же собой представляют звезды? Какие космические объекты так называют?

Что такое звезды

Звезды – это большие небесные тела, разбросанные по всему космическому пространству. Силой взаимного притяжения в них удерживаются определенные вещества. Звезды имеют высокую температуру, благодаря чему излучают свет, который могут увидеть наблюдатели с Земли. Объекты раскалены до такой степени, что любое вещество, даже металлы, находятся в них в газообразном состоянии, а их совокупность называется плазмой.

Почему звезды светятся

Все дело в разнице температур ядра и поверхности. Внутри звезды она может достигать 10 млн градусов и больше. Благодаря этому, в космическом объекте постоянно происходят термоядерные реакции, что превращает одни химические элементы в другие. К примеру, водород, из которого состоит большая часть звезд, становится в их недрах гелием. Благодаря этому возникает свечение, которое и видят земляне.

Наименование звезд

Имена отдельным космическим телам и созвездиям люди стали давать еще в глубокой древности. В то время человеку небо представлялось обиталищем различных мифических существ, в честь которых им и давали названия. Большинство из них используются до сих пор.

Разительно отличаются названия созвездий в Северном и Южном полушариях. Здесь преобладают не мифические существа, а различные части кораблей и морских обитателей. Дело в том, что Южное полушарие в древнем мире было слабо известно учеными. Его активное освоение началось с эпохой великих географических открытий. Логично, что многие созвездия южного полушария были впервые обнаружены моряками, которые и давали им название, исходя из собственных предпочтений. Так на небосводе появились Киль, Корма и пр.

Сейчас ученые выделяют 88 созвездий. Из них 12 относятся к зодиакальным. Самое яркое небесное тело в них обозначают греческой буквой «альфа», следующая – «бета» и т.д.

Отдельные звезды обозначают буквенно-цифровой аббревиатурой. Кроме того, небесные тела классифицируют по цвету и размерам. К примеру, голубые гиганты или коричневые карлики.

Формирование звезды

Моментом рождения звезды является объединение молекул водорода и гелия в одно облако. Оно начинает вращаться. Появляется внутренняя гравитация. Это обстоятельство ускоряет вращение.

Постепенно внешнее пространство облака начинает напоминать диск, а внутреннее – сферическое скопление. Температура материала повышается, как и его плотность. Это приводит к образованию шарообразной протозвезды.

Со временем давление и тепло повышаются до 1 млн.оС. Это приводит к слиянию атомных ядер. В этот момент и зажигается новая звезда. Небесное тело при этом практически незаметно для глаз наблюдателя, т.к. его окутывает мощное газо-пылевое облако.

Постепенно вследствие ядерного синтеза происходит преобразование некоторого количества атомной массы в энергию.

Все это время звезда из-за воздействия различных сил находится в движении. В основном она вращаются вокруг галактик или космических объектов с мощным гравитационным полем.

Звездная эволюция

У любого космического тела есть определенный цикл развития, который называется эволюцией. Большое влияние на этот процесс оказывает масса звезды. Чем больше весит объект, тем менее продолжительным будет его жизненный цикл.

Космические тела с промежуточной массой, т.е. в 1,5-8 раз тяжелее Солнца, зарождаются из облака, размер которого может достигать 100000 световых лет. Когда температура внутри достигает 3725 оС, из туманности образуется протозвезда. После начала слияния водорода она преобразуется в объект с переменными колебаниями в яркости. Благодаря сжатию силы тяжести, уравновешивается процесс расширения. Звезда начинает получать энергию от синтеза водорода, происходящего в ее ядре. На формирование объекта уходит около 10 млн. лет.

Читайте также:
Эклиптика ℹ определение в астрономии, направление движения Солнца и Земли в одной плоскости, основные созвездия, положение небесных тел, точки координат

После того, как весь водород преобразовался в гелий, под действием силы гравитации материя становится ядром, которое начинает быстро нагреваться. Происходит расширение внешних слоев, которые благодаря воздействию внешней среды быстро охлаждаются. Так образуется красный гигант. Далее начинаются химические процессы с гелием. Когда он полностью преобразуется в другие вещества, ядро под действием увеличивающейся температуры расширяет оболочку. Это приводит к образованию белого карлика, температура которого может достигать 100000 оС. Продукты, необходимые для нагревания, окончательно иссякают. Поэтому объект начинает постепенно охлаждаться. Через несколько миллиардов лет он становится черным карликом и заканчивает свой жизненный путь.

Наиболее быстро эволюция протекает у звезд большой массы. От формирования объекта до окончания жизненного цикла проходит от 10000 до 100000 лет. В начале своей жизни они имеют высокую температуру, яркость и большие размеры. Звезда отличается насыщенным голубым цветом. Постепенно она становится красным сверхгигантом, внутри которого идет активное сплавление углерода в тяжелые элементы. Благодаря этому образуется железное ядро. Его ширина может достигать 6000 км. Его ядерное излучение не может сопротивляться силе притяжения.

Когда масса космического объекта примерно в 1,5 раза превышает солнечную, происходит крушение ядра. Это приводит к образованию сверхновой звезды. В процессе разрушения его температура поднимается до 10 млрд. оС, благодаря чему железо разбивается на нейроны. За секунду ядро уменьшается в размерах до 10 км. Затем происходит взрыв.

Далее существует два варианта развития событий. Если оставшееся ядро весило меньше, чем три Солнца, оно превратится в нейтронную звезду. Объект будет вращаться и излучать радиоимпульсы. Если ядро было тяжелее трех солнечных масс, оно полностью разрушится, а на его месте образуется черная дыра.

Наиболее медленно происходит формирование звезд с небольшой массой. Дело в том, что они медленно тратят свои топливные запасы. Их жизненный путь длится от 100 миллиардов до 1 триллиона лет. Соответственно, такие объекты еще не умирали. Ведь установлено, что возраст Вселенной – 13,7 миллиардов лет. Красные карлики не могут слиться ни с чем, кроме водорода. Это приводит к тому, что они не способны увеличиваться в размерах. Такие светила будут медленно охлаждаться и со временем превратятся в черных карликов, после чего завершат свой жизненный путь.

Что такое звезда в космосе ? определение, виды звезд, интересные факты, из чего состоит небесный объект, какую форму имеет космическая звезда, классификация в астрономии, происхождение названий

Ночное небо завораживало людей своей красотой с давних времен, а ученым не давали покоя его загадки. Они и сейчас ищут ответы на вопросы о том, как возникла Вселенная, откуда появились галактики, что такое звезды в космосе. И пусть еще многое не известно, небесные светила уже приоткрыли немало своих тайн астрономам.

Общие сведения

Самое распространенное определение звезды в астрономии — образование из раскаленного газа в форме шара. По мере развития жизненного цикла изменяется структура и состав светил. Поскольку невозможно увидеть их строение воочию, создаются модели, основанные на сложных вычислениях. В структуре звезд обычно выделяют:

  • Ядро, в котором проходят реакции термоядерного синтеза (РТС). Здесь находятся только свободные ядра атомов и электроны, поэтому они упакованы гораздо плотнее, чем если бы это были целые атомы.
  • Зона переноса лучистой энергии. Во время её прохождения лучи сохраняют количество энергии, но меняются качественно, увеличивая длину волны. Например, из недр Солнца выходят рентгеновские и гамма-лучи, а с поверхности — световые и инфракрасные.
  • Зона конвекции, где происходит перемешивание газовых слоев. У более старых светил эта область меньше, а внешние со временем разрастаются.
  • Фотосфера и хромосфера. На внешней поверхности звёзд часто наблюдаются выбросы газа — протуберанцы.

В космосе распространены самые разные звездные системы, состоящие из двух, трех и более звезд. Главное условие того, что объекты составляют систему — они должны вращаться вокруг общего центра тяжести. Самые горячие светила — белые и голубые гиганты. Холодные звезды бывают красными гигантами или почти остывшими коричневыми карликами.

Звездные параметры

Молодые звезды имеют практически одинаковый состав веществ. Это 73% водорода, 25% гелия и 2% металлических веществ (в астрономии к ним относят все, что не является водородом и гелием). Именно эти два процента и масса объекта имеют огромное значение и делают звезды такими разными. Они влияют на протекание РТС в ядре и металличность звезд. От этого зависят и все другие параметры. К ним относятся:

  • Масса и радиус — вычисляются астрономическими методами, как и расстояние до звезды.
  • Светимость — обозначается в цифрах по отношению к солнечной.
  • Цвет зависит от типа и диапазона испускаемых волн.
  • Спектральные классы, по которым можно узнать о химическом составе и температуре поверхности.

На возможность появления планет у светила или в звездной системе влияет металличность звезды. В науке используется также понятие абсолютной звездной величины, которая характеризует интенсивность потока звездного излучения. Поскольку расстояния до светил отличаются миллионами световых лет, то очень далекая звезда высокого класса может быть почти невидимая с Земли, а близкая, но слабая ярко сиять на небе. Поэтому при наблюдениях используется и такое понятие, как видимая звездная величина.

Процесс рождения

Звезды, как и все во Вселенной, проходят этапы зарождения, жизни и умирания. На это уходят миллиарды лет, но в космосе находятся объекты на разных этапах развития. Поэтому астрономы смогли составить некоторое представление о том, как развиваются звезды.

Теория появления протозвезд

На сегодня наиболее вероятной считается теория появления звезд из облака, образованного космической пылью и газом (водородом по большей части), которое имеет огромную массу из-за своих размеров. В поперечнике она может достигать 300 световых лет. В результате гравитационного сжатия газопылевого облака сначала образуется так называемая протозвезда. Причины, по которым может начаться процесс:

  • столкновение двух подобных облаков;
  • прохождение облака вблизи рукава спиральной галактики, где находятся плотные скопления светил;
  • ударная волна, вызванная появлением сверхновой звезды в близлежащем пространстве;
  • при столкновении галактик возможно множественное звездообразование.
Читайте также:
Доклад Созвездие Овен - описание, координаты и положение

Температура в центре протозвезды неуклонно возрастает и в какой-то момент достигает порога, после которого протоны молекул водорода могут преодолеть силы отталкивания и вступить в РТС и превратиться в гелий. Итог — образование гелиевого ядра и потока элементарных частиц.

При этом выделяется значительное количество тепловой энергии, разогревающее ядро протозвезды до сверхвысоких температур. Избыточная энергия устремляется к ее поверхности и вовне. Так в космосе рождается новое светило. В этот момент начинает возрастать внутри звездное давление, что не дает силам гравитации сжать светило до сверхплотного состояния. Ее внутреннее давление непрерывно возобновляется, что обеспечивает энергетическое равновесие и устойчивое состояние звезды.

Диаграмма Герцшпрунга-Рассела

Она графически изображает состояние звездных объектов на разных стадиях жизненного цикла. На диаграмме четко видны группы, сформированные согласно физическим характеристикам звезд, соответствующих разным этапам их эволюции. Стадия активного сжигания водорода, согласно этой диаграмме, относится к основной фазе жизненного цикла. В ней находится и Солнце. С его зарождения прошло около 5 млрд лет. Примерно столько же светилу осталось жить.

Распределение звезд на диаграмме Герцшпрунга-Рассела идет неравномерно: около 90% светил сконцентрировано на одной из диагоналей, которая называется главной последовательностью. Здесь находятся светила в стадии горения водорода.

Завершение жизненного цикла

Рано или поздно жизнь любого звездного объекта подходит к концу. Как это происходит, тоже зависит от массы светила. Меньше всего живут массивные светила: в них хоть и содержатся огромные запасы водородного топлива, но, чтобы не впасть в гравитационный коллапс, им приходится очень интенсивно их расходовать. Срок жизни таких светил составляет «всего лишь» десятки миллионов лет.

Небольшие звездочки могут существовать и сотни миллиардов лет. Солнце в этой градации находится примерно посередине. Светила, масса которых не более чем в восемь раз превышает солнечную, сначала превращаются в красные гиганты. Когда запасы водорода истощаются, силы гравитационного сжатия становятся больше внутри звездного давления, и звезда начинает сжиматься и уплотняться. У этого процесса два следствия:

  • в РТС вступает водород из самых нижних слоев ядра;
  • увеличение ядерной температуры приводит к началу вторичной РТС, в которую вступает гелий, преобразовываясь в углерод.

При этом энергия выделяется настолько интенсивно, что звезду как бы раздувает изнутри. Солнце, когда достигнет этой стадии, в диаметре превысит орбиту Венеры. Тем не менее, количество совокупной энергии не увеличивается. Поскольку поверхность излучения становится намного больше, происходит остывание светила до красной части видимого спектра. Таким образом, оно становится красным гигантом.

Последняя стадия развития объектов, подобных Солнцу — белые карлики. Она наступает, когда ядро остывает до температуры, при которой невозможна дальнейшая РТС, а силам сжатия начинают сопротивляться свободные электроны, не участвующие в реакции (вырожденный электронный газ). Это приводит к стабилизации звезды в виде белого карлика, излучающего в пространство остаточное тепло до полного остывания.

Сверхновые и пульсары

После выгорания гелия в ядре звезды остается достаточно энергии для запуска новых РТС. В результате образуются углерод, кремний, магний и другие материалы, вплоть до железа. При этом, когда начинается новая реакция в ядре, предыдущая продолжается в оболочке. Считается, что все химические элементы во Вселенной так и появились — из недр умирающих массивных светил.

Железо не может быть топливом для РТС без притока энергии извне и накапливается в ядре. Его протоны вступают в реакции с электронами вырожденного газа, образуя нейтроны. Этот процесс происходит практически мгновенно. Все свободные электроны исчезают и, поскольку силам гравитационного сжатия больше нечему противодействовать, со звездой случается гравитационный коллапс.

Энергия столкновения внешней оболочки и нейтронного ядра так высока, что она с огромной силой отскакивает назад и разлетается во все стороны с высочайшей скоростью. Происходит буквально взрыв звезды и превращение ее в сверхновую. С Земли это выглядит как ослепительная вспышка.

Если звезда весила около 10—30 солнечных масс, то после разлета оболочки ее стабилизируют вырожденные нейтроны. В результате образуются быстро вращающиеся объекты диаметром около 15 км, излучающие электромагнитные импульсы с частотой собственного вращения. Они называются пульсарами. Но если масса светила превышала 30 солнечных, ничто не способно остановить ее коллапс. Она сжимается до чёрной дыры — области с настолько большой массой и гравитацией, что её не могут покинуть даже частицы света.

Созвездия и интересные факты

За звездами люди вели наблюдение с давних времен и для удобства разделили звездное небо на области или созвездия, в которых видели существующих или мифологических животных, птиц, героев легенд или какие-то предметы. Самые красивые и яркие получили собственные названия, происхождение которых связано с мифами и историями разных народов. Собственные имена есть и у многих светил. Чаще всего это арабские, греческие или латинские слова. Список названий звезд, заметных в Северном полушарии:

  • Арктур — α Волопаса. Светит ярче всех на небе северных широт. Это оранжевый гигант спектрального класса К. Поскольку таких светил не встречается в галактике Млечный путь, можно предположить, что это старое светило образовалось в более древней галактике.
  • Вега — α Лиры, третья из самых заметных светил Северного полушария и первая, которую сфотографировали (не считая Солнца) и установили спектр излучения. Вокруг этого молодого светила вращается диск из космической пыли, поэтому он испускает сильное инфракрасное излучение. Похожие космические объекты называют Вега-подобными.
  • Полярная звезда — α Малой Медведицы, всегда находится на севере, поэтому ее издавна использовали в морской навигации и называли путеводной звездой. Это звездная система с больши́м главным светилом, двумя спутниками и еще одной более далекой парой. Основная звезда относится к классу цефеид — равномерно пульсирующих звезд.
  • Фомальгаут — α Южной рыбы, звезда осеннего неба и единственная хорошо видимая в северных широтах в это время года.
    Читайте также:
    Созвездие Льва на небе ⭐ картинки, как выглядит, рассказ и легенда о созвездии льва, история, звезды созвездия Льва, самая яркая звезда и координаты

    После изобретения телескопа были открыты множество новых звездных объектов, которым присваиваются буквенно-числовые индексы. Из них можно узнать информацию о свойствах светила и его небесных координатах.

    Другие светила

    На небе практически всегда можно наблюдать множество звезд. Самые красивые небесные светила:

    • Альтаир — α Орла, одна из ближайших к Земле звезд. Белый и раскаленный, он относится к классу А. Очень быстро вращается вокруг своей оси, поэтому ему присуще гравитационное затемнение.
    • Альнилам — ε Ориона, горячий голубой гигант, постепенно расширяющийся до сверхгиганта.
    • Капелла — α Возничего. Ее название означает «козочка». Это двойной объект, состоящий из гигантов. Одна из звезд чуть горячее и желтого цвета, вторая — оранжевого.
    • Спика — α Девы, система из двух подобных бело-голубых гигантов. Это переменная звезда, поэтому ее звездная величина постоянно меняется.
    • Денеб — α Лебедя, один из самых больших объектов по абсолютной величине, известных астрономам. О его настоящей величине можно получить представление по следующему факту: это двадцатая по яркости звезда на небе. Светила, на столько же удаленные от Земли, как Денеб, вообще не видны невооруженным глазом.
    • Ригель — β Ориона, громаднейший бело-голубой сверхгигант. Соперничает по абсолютной величине с Денебом. Это яркое светило красиво освещает расположенную рядом туманность под названием Голова Ведьмы.

    Наблюдение за космическими телами и явлениями — очень увлекательное занятие. Не менее интересно изучать то, как они возникли.

    Космос, звезды: основная информация, список самых известных

    Звездное небо не оставляет равнодушным никого, его красота и великолепие захватывает дух. Люди видят лишь множество светящихся точек, некоторые из них особенно яркие, другие – тусклее. Но за ними не только приятно наблюдать, но также интересно узнать, что такое звезда в космосе на самом деле и какая информация о ней известна в настоящее время.

    Основная информация о звездах во Вселенной

    Звезда – небесное тело, представляющее собой огромный газовый шар, от которого исходит свет и тепло. В связи с термоядерными реакциями, происходящими в ее ядре, в котором температура может достигать 10 миллионов градусов Цельсия, на поверхности может варьироваться в пределах от 2°C до 22000°C. Именно благодаря этой энергии, звезды могут светить в течение нескольких миллионов лет, и поэтому они видны на Земле в ночное время. Большинство из них по размерам и массе значительно превосходят Солнце, но находясь на огромной дистанции от нашей планеты, кажутся людям миниатюрными. Обладая гравитацией, они способны удерживать рядом с собой объекты меньших размеров, которые вращаясь, образовывают планетную систему. Все звезды Вселенной объединяются в группы, называемые галактиками.

    Основные отличия между звездами и планетами:

    • первые излучают свет, а вторые только способны его отражать, так как являются темными небесными телами;
    • масса первых гораздо больше вторых;
    • звезда неподвижна, в то время как планета способна вращаться вокруг нее, а также вокруг собственной оси;
    • планета имеет спутники;
    • планета имеет большую плотность, так как содержит в химическом составе как легкие, так и тяжелые элементы.

    Ученых, изучающих космос, звезды, Вселенную, планеты, их спутники и другие космические объекты, называют астрономами. Они не только наблюдают из телескопов за небесными телами, но и проводят полноценные исследования, изучают их характеристики и т.д. По их подсчетам на небе невооруженным глазом можно увидеть приблизительно 4500 светил, а всего их в составе Млечного Пути – около 150 миллиардов. А если учесть, сколько существует триллионов галактик, то дать точную оценку количеству звезд во Вселенной достаточно сложно.

    Виды звезд в космосе, во Вселенной

    Существуют такие классы в зависимости от цвета и температуры:

    • O – белая звезда, самые горячие – 22000°C;
    • B – бело-голубая, 14000°C;
    • A – белая, 10000°C;
    • F – бело-желтая, 6700°C;
    • G – желтые звезды в космосе имеют температуру 5500°C, самый известный пример – Солнце;
    • K – желто-оранжевая, 3800°C;
    • M – красная, 1800°

    Помимо указанной классификации, ученые выделяют следующие виды звезд в космосе:

    • коричневый карлик – обнаружить сложно, так как имеет миниатюрные габариты и слабое свечение;
    • белый карлик – находится в фазе перехода в другое состояние;
    • красный гигант, сверхгигант – обладает высокой яркостью и максимальным инфракрасным излучением;
    • переменная – интенсивность излучения постоянно меняется;
    • двойная – два раскаленных газовых шара примерно одинаковой массы, составляющие единое целое (примером может служить звезда Мира);
    • новая, сверхновая – находится в конце цикла эволюции, когда происходит взрыв, сопровождаемый резким повышением яркости;
    • нейтронная – пребывает на поздней стадии развития, происходит сжатие ядра, из-за чего излучаются волны в нейтронном, рентгеновском или диапазоне радиочастот;
    • черная дыра – из-за сильного гравитационного поля отсутствует излучение вовсе.

    Содержит космос звезды, совершенно отличающиеся друг от друга по размерам, массе, светимости. Сложно представить, что многие из них гораздо крупнее Солнца. А учитывая их возможное расположение на расстоянии в миллиарды световых лет от нашей планеты, не исключается вероятность, что мы видим даже переставшие существовать объекты.

    Из чего состоят звезды в космосе, Вселенной

    Юные астрономы часто задаются вопросом, из чего состоят звезды в космосе. Ученые долгое время не могли дать на него ответ, и тайна была раскрыта лишь в 19 веке. С открытием метода спектрального анализа выяснилось, что все источники света обладают уникальным спектром, который они излучают, и на него напрямую влияет состав. Материалы способны поглощать и пропускать через себя спектральные линии.

    Читайте также:
    Комета - определение и описание, строение, виды и их характеристика

    Со временем состав претерпевает изменения. С увеличением количества гелия ядро будет прибавлять в объеме. Это приведет к расширению площади термоядерной реакции, что повлияет на интенсивность свечения и температуру небесного светила. Вследствие главной реакции синтеза – протон-протонного цикла, при котором происходит горение водорода, водородная оболочка станет больше, а гелиевое ядро – меньше. Это повлечет за собой уменьшение силы излучения. Спустя время начнется горение гелия, что вызовет мощные вспышки. В итоге звезда перейдет в стадию красного гиганта. Когда ее оболочка полностью истощится, и останется только ядро, то она станет белым карликом. Далее будет остывать еще долгое время, постепенно превращаясь в нейтронную звезду или черную дыру.

    В начале жизненного пути звезды в космосе имеют примерно одинаковый состав. В нем преобладает водород, который составляет 73%, но вследствие термоядерных реакций превращается в другие химические элементы, в том числе в гелий. На начальном этапе гелий занимает всего 25%. На другие тяжелые вещества отводится всего 2%, но их достаточно, чтобы повлиять на скорость процессов синтеза, протекающих внутри ядра, и на общие характеристики, внешний вид космических тел.

    Самые известные звезды в космосе и Вселенной

    Естественно, самой известной звездой является ближайшая к Земле – Солнце, оно служит источником жизни и тепла для планеты. Но существуют и другие светила, привлекающие своими особенностями. Итак, самые известные звезды в космосе:

    • Сириус – почти вдвое крупнее и массивнее Солнца, излучает в 25 раз больше света, поэтому является самой яркой звездой на ночном небе, не считая Солнца. Она относится к созвездию Большого Пса. В 1844 году астроном Фридрих Бессель смог зафиксировать колебания Сириуса, предположив, что где-то рядом есть звезда-компаньон. Теория подтвердилась в 1862 году Алваном Кларком, который обнаружил еще одно светило, прозванное Сириус B;
    • Канопус – ярчайшая точка созвездия Киля, ее свет является ориентиром для космических станций. Ее свечение превышает Солнце в 14800 раз, а размеры – в 65 раз;
    • Бетельгейзе – супергигант в созвездии Ориона, превосходящий Солнце по яркости в 55000 раз, а в диаметре – в 650. Если бы он был в центре Солнечной системы, то смог бы поглотить все планеты, находящиеся до орбиты Марса;
    • Альфа Центавра – украшает звездный космос система из 3 объектов в созвездии Кентавра, ближайшая к Солнцу, их отделяет чуть более 4 световых года. За ней лучше всего наблюдать из Южного полушария;
    • Капелла – система из 4 светил: 2 желтых гиганта, 2 красных карлика. Учитывая, что первая пара находится на последней стадии жизни, светимость в ближайшее время ослабеет;
    • Полярная звезда – хоть и относится к гигантам, в отличие от перечисленных выше, не входит в список крупнейших и ярчайших, но все же является одной из самых известных, ведь о ней знают даже маленькие дети. Будучи элементом Малой Медведицы, почти не меняет своего расположения относительно определенной широты. Всегда указывает на север, поэтому ее еще называют Северной, и она уже на протяжении многих тысячелетий служит ориентиром для моряков и путешественников.

    Список можно пополнить большим количеством небесных светил, которые так или иначе выделяются на небосклоне. Астрономы, как новички, так и профессионалы, любящие космос и звезды, всегда смогут самостоятельно найти интересные для наблюдения экземпляры, открыть для себя новые границы и тайны Вселенной.

    Что такое звезды?

    Одно из самых красивых зрелищ, которые только есть в нашем мире, — вид звездного неба в темную безлунную ночь. Тысячи звезд алмазными россыпями усеивают небо — яркие и тусклые, красные, белые, желтые… Но что такое звезды? Расскажу об этом совсем просто, так, чтобы понятно было всем.

    Звезды — это огромные шары, разбросанные тут и там в космическом пространстве. Вещество в них удерживается силами взаимного притяжения. Эти шары разогреты до такой высокой температуры, что способны излучать свет, благодаря чему мы их и наблюдаем. На самом деле звезды настолько раскалены, что любое вещество, даже самый твердый металл, пребывает на них в виде электрически заряженного газа. Такой газ называется плазмой.

    Почему звезды светятся?

    Внутри звезд температура гораздо выше, чем на поверхности. В звездном ядре она может достигать 10 миллионов градусов и выше. При таких температурах идут термоядерные реакции превращения одних химических элементов в другие. Например, водород, из которого в основном состоят почти все звезды, в их недрах превращается в гелий.

    Именно термоядерные реакции служат основным источником энергии звезд. Благодаря им звезды способны светить на протяжении многих миллионов лет.

    Звезды и галактики

    Во Вселенной насчитывается больше миллиарда миллиардов звезд. В соответствии с законами природы они собрались в огромные звездные острова, которые астрономы назвали галактиками. Мы живем в одной из таких галактик, имя которой — Млечный Путь.

    Млечный Путь — галактика, частью которой являются Солнце и все видимые на небе звезды. Фото: Juan Carlos Casado (TWAN, Earth and Stars)

    Все звезды, видимые на небе невооруженным глазом или в небольшой телескоп, принадлежат Млечному Пути. Другие галактики тоже можно наблюдать на небе с помощью телескопа, но все они выглядят как тусклые туманные пятнышки света.

    Солнце — самая близкая к нам звезда. Она ничем не выделяется на фоне миллионов других звезд, которые можно увидеть в телескоп. Солнце — не самая яркая, но и не самая тусклая звезда, не самая горячая, но и не самая холодная, не самая массивная, но и не самая легкая. Можно сказать, что Солнце — звезда-середняк. И только нам роль Солнца кажется исключительно важной, потому что эта звезда дарит нам тепло и свет. Только благодаря Солнцу на Земле возможна жизнь.

    Читайте также:
    Почему мерцают звезды - причины, особенности отражения, названия

    Размеры, масса и светимость звезд

    Размеры и масса даже небольших звезд огромны. Например, Солнце в 109 раз больше Земли по диаметру и в 330000 раз массивнее нашей планеты! Чтобы заполнить объем, который занимает в пространстве Солнце, нам потребовалось бы больше миллиона планет размером с Землю!

    Сравнительные размеры Солнца и планет Солнечной системы. Земля на этой картинке — крайняя левая планета в первом, ближайшем ряду.

    Но мы уже знаем, что Солнце обычная, средняя звезда. Есть звезды гораздо крупнее Солнца, как, например, звезда Сириус, самая яркая звезда ночного неба. Сириус в 2 раза массивнее Солнца и в 1,7 раза больше его по диаметру. Он также излучает в 25 раз больше света, чем наша дневная звезда!

    Другой пример — звезда Спика, возглавляющая созвездие Девы. Ее масса в 11 раз больше Солнца, а светимость в 13000 раз выше! Вряд ли возможно даже представить себе испепеляюще мощное излучение этой звезды!

    Но большинство звезд во Вселенной все-таки меньше Солнца. Они легче и светят гораздо слабее, чем наша звезда. Самые распространенные звезды называются красными карликами, так как излучают в основном красный свет. Типичный красный карлик примерно в 2-3 раза легче Солнца, в 4 или даже 5 раз меньше его по диаметру и в 100 раз тусклее, чем наша звезда.

    В нашей галактике порядка 700 миллиардов звезд. Из них не меньше 500 миллиардов окажется красными карликами. Но, к несчастью, все красные карлики настолько тусклые, что ни один из них не виден на небе невооруженным глазом! Чтобы наблюдать их, нужен телескоп или хотя бы бинокль.

    Необычные звезды

    Помимо красных карликов, которые составляют большинство всех звезд во Вселенной, помимо звезд, похожих на Солнце, а также таких звезд, как Сириус и Спика, существует также небольшая доля необычных звезд, чьи характеристики — размеры, светимость или плотность — сильно отличаются от других звезд.

    Белые Карлики

    Одной из таких звезд является спутник Сириуса.

    Многие звезды живут не поодиночке, как наше Солнце, а парами. Такие звезды называются двойными. Точно так же, как Земля и другие планеты Солнечной системы движутся по орбитам вокруг Солнца под действием его притяжения, так и звезда-спутник может обращаться по орбите вокруг главной звезды.

    Двойная звезда. Главная звезда и звезда-спутник меньшего размера вращаются вокруг общего центра масс, обозначенного на рисунке красным крестом. Источник: Википедия

    На самом деле планеты вместе с Солнцем обращаются вокруг общего центра масс. То же самое происходит и с компонентами двойной звезды — они обе вращаются вокруг общего центра масс (см. gif-рисунок).

    В XIX веке у Сириуса, самой яркой звезды ночного неба, был обнаружен очень тусклый спутник, видимый только в телескоп. Его назвали Сириус B (читается как Сириус Б). Вместе с тем оказалось, что его поверхность столь же горячая, как поверхность Сириуса. В то время астрономы уже знали, что тело испускает тем больше света, чем оно горячее. Следовательно, с каждого квадратного метра поверхности спутника Сириуса излучалось столько же света, сколько с квадратного метра самого Сириуса. Почему же спутник был такой тусклый?

    Потому что площадь поверхности Сириуса В была гораздо меньше площади поверхности Сириуса А! Оказалось, что размер спутника равен размеру Земли. Вместе с тем его масса оказалась равна массе Солнца! Простые подсчеты показывают, что каждый кубический сантиметр Сириуса B содержит 1 тонну вещества!

    Такие необычные звезды назвали белыми карликами.

    Красные сверхгиганты

    На небе также были найдены звезды огромных размеров и светимостей. Одна из таких звезд, Бетельгейзе, в 900 раз больше Солнца по диаметру и излучает в 60000 раз больше света, чем наше дневное светило! Другая звезда, VY Большого Пса (читается как «вэ-игрек») в 1420 раз больше Солнца по диаметру! Если VY Большого Пса поместить на место Солнца, то поверхность звезды будет находиться между орбитами Юпитера и Сатурна, а все планеты с Меркурия по Юпитер (включая Землю!) оказались бы внутри звезды!

    Сравнительные размеры Солнца (слева вверху), Сириуса (белая звезда) и некоторых гигантских звезд. Красный сверхгигант UY Щита, который занимает большую часть картинки, в 1900 раз больше Солнца по диаметру.

    Такие звезды называются сверхгигантами. Отличительная особенность гигантских и сверхгигантских звезд состоит в том, что они при всех своих колоссальных размерах содержат лишь в 5, 10 или 20 раз больше вещества, чем Солнце. Это значит, что плотность таких светил очень низка. Например, средняя плотность VY Большого Пса в 100000 раз меньше плотности комнатного воздуха!

    И белые карлики, и звезды-гиганты не рождаются такими, а становятся в ходе эволюции, после того, как водород в их недрах переработан в гелий.

    Звезды и скрытая масса Вселенной

    Еще относительно недавно астрономы полагали, что в звездах содержится почти все вещество во Вселенной. Но в последние десятилетия выяснилось, что львиную долю массы Вселенной составляют таинственная темная материя и еще более таинственная темная энергия. На звезды, таким образом, приходится всего около 2% всей материи (а на планеты, кометы и астероиды и того меньше!). Но именно эти 2% мы и способны наблюдать, так как именно они излучают свет! Трудно представить, насколько унылым местом была бы Вселенная, если бы в ней не было звезд!

  • Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: