Электролиз – понятие, уравнения и схемы процесса, примеры решений

Что такое электролиз

Если в электролит опустить два электрода, и подсоединить их к источнику питания, то отрицательно заряженные ионы (анионы), находящиеся в электролите, начнут притягиваться к положительному электроду (аноду), а положительно заряженные ионы (катионы) – к отрицательному электроду (катоду) – в цепи возникнет постоянный ток.

Катионы, достигнув поверхности катода, будут присоединять к себе электроны металла (восстанавливаться); анионы на аноде будут отдавать свои электроны (окисляться).

На рисунке выше показан простейший случай электролиза – в расплаве хлорид натрия диссоциирует на катионы натрия и анионы хлора. Под действием электрического тока Na + восстанавливаются на катоде, Cl – – окисляются на аноде.

Уравнение электролиза будет иметь вид:

В результате электролиза на аноде будет выделяться газообразный хлор, а на катоде – металлический натрий.

Электролиз

окислительно-восстановительная реакция, которая протекает на электродах при прохождении электрического тока через электролит

Окислительно-восстановительная реакция, протекающая при электролизе, протекает за счет электрической энергии – без внешнего источника энергии она будет невозможна.

Следует обратить внимание, что электролиз в растворе электролита и электролиз в расплаве электролита – немного разные вещи.

Нюанс заключается в том, что в водном растворе электролита кроме ионов металла и кислотного остатка, присутствуют еще и продукты диссоциации воды, что необходимо учитывать.

Правила электролиза водных растворов

Промышленное применение электролиза

  • Выделение и очистка металлов.
  • Получение алюминия, магния, натрия, кадмия.
  • Получение щелочей, хлора, водорода.
  • Очистка меди, никеля, свинца.
  • Процессы напыления защитных покрытий с целью защиты металлов от коррозии.

Примеры решения задач по электролизу

1. Написать уравнение электролиза раствора хлорида калия для нерастворимого анода.

  • KCl → K + +Cl –
  • электрлиз на аноде (+):
    2Cl – -2e – = Cl2 0 ↑
  • электролиз на катоде (-):
    2H2O+2e – = H2↑+2OH –
  • Суммарное ионное уравнение:
    2H2O+2Cl – = H2↑+Cl2↑+2OH –
  • Молекулярное уравнение:
    2KCl+2H2O = H2↑+Cl2↑+2KOH

2. Написать уравнение электролиза раствора хлорида калия для медного (растворимого) анода.

  • KCl → K + +Cl –
  • анод(+):
    Cu 0 -2e – = Cu 2+
  • ионы меди в процессе электролиза переходят с анода на катод (выделение чистой меди на катоде):
    Cu 2+ +2e – = Cu 0
  • Концентрация хлорида калия в растворе остается постоянной, поэтому, суммарное уравнение электролиза для растворимого анода написать нельзя.

3. Написать уравнение электролиза раствора гидроксида натрия.

  • NaOH → Na + +OH –
  • электролиз на аноде(+):
    4OH – +4e – = O2↑+2H2O
  • электролиз на катоде(-):
    2H2O+2e – = H2↑+2OH –
  • Суммарные уравнения:
    4H2O+4OH – = 2H2↑+O2↑+4OH – +2H2O
    2H2O = 2H2↑+O2

4. Написать уравнение электролиза раствора хлорида цинка с угольными электродами.

  • ZnCl2 → Zn 2+ +2Cl –
  • электролиз на аноде(+):
    2Cl – -2e – = Cl2
  • катод(-):
    Zn 2+ +2e – = Zn 0
    2H2O+2e – = H2↑+2OH –
  • Суммарное уравнение электролиза написать нельзя, поскольку, неизвестно сколько электричества затрачивается на восстановление воды, а сколько – на восстновление ионов цинка.

5. Написать уравнение электролиза водного раствора нитратов меди (II) и серебра с нерастворимыми электродами.

  • Cu(NO3)2 → Cu 2+ +2NO3
    AgNO3 → Ag + +NO3
  • электролиз на аноде(+):
    2H2O-4e – = O2↑+4H +
  • электролизы на катоде(-):
    Cu 2+ +2e – = Cu 0
    Ag + +e – = Ag 0
  • Согласно положению металлов в ряду напряжений (см. выше), катионы серебра будут восстанавливаться первыми, катионы меди – в последнюю очередь.
  • Ионные уравнения:
    4Ag + +2H2O = 4Ag 0 +O2↑+4H +
    2Cu 2+ +2H2O = 2Cu 0 +O2↑+4H +
  • Молекулярные уравнения:
    4AgNO3+2H2O = 4Ag+O2↑+4HNO3
    2Cu(NO3)2+2H2O = 2Cu+O2↑+4HNO3

Если вам понравился сайт, будем благодарны за его популяризацию :) Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе

Электролиз — понятие, правила применения и схемы процесса

Понятие электролиза

Электролиз — процесс, который возникает при воздействии электрического тока на электролит и заключается в выделении электродами составных частей.

Значение явления заключается в том, что путём воздействия электричества на ионы можно организовывать новые формы, структуры или даже сами вещества. Это позволяет человеку контролировать некоторые процессы, протекающие на молекулярном уровне. Законы данного явления в химии и физике открыл английский учёный Фарадей.

Явление происходит при участии электродов, которые делятся на катод и анод:

— электрод с отрицательным зарядом, на котором происходит восстановление катионов;

— электрод с положительным зарядом, где происходит окисление анионов.

Приборы чаще всего изготавливаются из материалов, пропускающих электрический ток, например, из графита или большинства металлов. Оба прибора подключаются к отрицательному и положительному полюсам соответственно.

Явление происходит в следующем порядке:

  1. Диссоциация.
  2. Электролиз.

Очень важно не путать такие близкие определения, как гидролиз и электролиз. Первым явлением считается разложение раствора вещества на ионы (заряженные частицы) в воде.

Промышленное применение электролиза

Электролиз широко используется в следующих сферах промышленности:

  • Выделение и очистка металлов.
  • Получение алюминия, магния, натрия, кадмия.
  • Получение щелочей, хлора, водорода.
  • Очистка меди, никеля, свинца.
  • Процессы напыления защитных покрытий с целью защиты металлов от коррозии.лектролиз (от греч. «лизис» – разложение, растворение, распад) – это совокупность физико-химических явлений на находящихся в жидкости электродах при прохождении электрического тока. Например, погрузив в воду два электрода и подключив их к источнику постоянного тока, мы обнаружим, что вокруг электродов выделяются пузырьки – это газы водород и кислород. При их образовании уменьшается масса воды, то есть она разлагается на входящие в её состав элементы.
Читайте также:
Равноускоренное движение - определение и график, путь, примеры

Если электроды погружать не в воду, а в растворы или расплавы солей, кислот и щелочей, то можно наблюдать выделение других газов и даже твёрдых веществ, оседающих на поверхности электродов. По этой причине электролиз широко применяют в технике. Рассмотрим самые важные направления его применения. Но перед этим запомним, что электрод, присоединяемый к «+» источника тока, называют анодом, а электрод, присоединяемый к «–» источника тока, называют катодом.


Получение рафинированной меди.

Электрометаллургия

Электролитическим путём в промышленности получают многие металлы: алюминий, медь, магний, хром, титан и др. Например, для получения чистого алюминия в специальную металлическую ванну вливают расплавленную при 900 °С руду, содержащую алюминий в химически связанном виде (обычно в виде оксидов). В ванну опускают угольные стержни, которые служат анодами, а сама ванна – катодом. При прохождении тока через расплав на дне ванны выделяется жидкий алюминий, который сливают через отверстие внизу ванны.


Электрометаллургия.

Рафинирование (очистка) меди

Медь, применяемая в электро- и радиотехнике для изготовления проводников, должна быть чистой, поскольку примеси уменьшают электропроводность. Для очистки меди от примесей в электролитическую ванну заливают раствор сульфата меди II (устаревшее название – медный купорос) и опускают две пластины: анод – толстую пластину из неочищенной меди и катод – тонкий лист из чистой меди.

При пропускании электрического тока анод постепенно растворяется, примеси выпадают в осадок, а на катоде оседает чистая медь. Аналогичным способом получают и другие чистые металлы – никель, свинец, золото.

Гальваностегия

Для придания изделиям красивого внешнего вида, прочности или для предохранения от коррозии, их покрывают тонким слоем какого-либо металла: никеля, хрома и др. Для этого изделие тщательно очищают, обезжиривают и помещают как катод в электролитическую ванну, содержащую соль того металла, которым желают покрыть. Для более равномерного покрытия полезно применять две пластины в качестве анода, помещая изделие между ними.


Результат гальваностегии.

Гальванопластика

Это электролитическое осаждение металла на поверхности какого-либо предмета для воспроизведения его формы. Для этого с предмета сначала снимают слепок (из воска или гипса) и покрывают его токопроводящим слоем, например, слоем графита. Подготовленный таким способом предмет помещают в качестве катода в ванну с раствором соли соответствующего металла. При включении тока металл из электролита оседает на поверхности предмета. Гальванопластику используют для изготовления неограниченного числа точных копий того изделия, с которого был снят слепок.

Интересное по теме: Что такое закон Ома

Гальванополировка

Если резное металлическое изделие поместить в раствор электролита и включить ток, то наиболее сильное электрическое поле образуется у микроскопических выступов на поверхности этого изделия. Если оно подключено к «+» источника тока, то наиболее интенсивно ионы металла будут «вырываться» именно из выступов, и поверхность металла выровняется.

Будет интересно➡ Что такое заземление простыми словами

Электрофорез

От греч. «форезис» – перенесение), это лечебная процедура. Электроды накладывают на тело человека. Между телом и электродом помещают бумагу или ткань, пропитанную электропроводящим лекарственным препаратом. При включении тока начинается движение заряженных частиц из бумаги или ткани в кожу, а затем в тело человека. Так происходит процесс ввода лекарств, скорость которого можно регулировать, изменяя силу тока. Электролиз применяют также и для синтеза различных неорганических и органических веществ; это изучается в отдельной науке – электрохимии.

Первый закон Фарадея

Установленный Фарадеем первый закон говорит о прямой пропорциональности между массой вещества, выделившейся в ходе электролиза, и величиной заряда, который прошел через электролит.

Правило подкреплено формулой m = k * q

, то есть произведение заряда вещества на его электрохимический эквивалент, что равняется его массе.

Проверка первого закона Фарадея происходит следующим образом:

  • нужно взять три любых электролита, например, А, Б и В и пропустить ток через каждый;
  • если вещества одни и те же, то массы выделившихся можно назвать Г, Г1 и Г2;
  • при этом будет верным следующее равенство: Г= Г1+Г2.

Второй закон Фарадея

Данное правило, установленное Фарадеем, указывает на зависимость между атомной массой вещества, количеством возможных химических связей и самим электрохимическим эквивалентом.

Таким образом, электрохимический эквивалент прямо пропорционален атомной массе вещества, но валентности вещества он обратно пропорционален.

Процессы, протекающие при электролизе

Электролиз получил широкое распространение в металлургии цветных металлов и в ряде химических производств. Такие металлы, как алюминий, цинк, магний, получают главным образом путем электролиза. Кроме того, электролиз используется для рафинирования (очистки) меди, никеля, свинца, а также для получения водорода, кислорода, хлора и ряда других химических веществ.

Читайте также:
Консервативные и неконсервативные силы: определение и основные формулы

Сущность электролиза заключается в выделении из электролита при протекании через электролитическую ванну постоянного тока частиц вещества и осаждении их на погруженных в ванну электродах (электроэкстракция) или в переносе веществ с одного электрода через электролит на другой (электролитическое рафинирование). В обоих случаях цель процессов – получение возможно более чистых незагрязненных примесями веществ.

В отличие от электронной электропроводности металлов в электролитах (растворах солей, кислот и оснований в воде и в некоторых других растворителях, а также в расплавленных соединениях) наблюдается ионная электропроводность.

Электролиты являются проводниками второго рода. В этих растворах и расплавах имеет место электролитическая диссоциация – распад на положительно и отрицательно заряженные ионы. Если в сосуд с электролитом – электролизер поместить электроды, присоединенные к электрическому источнику энергии, то в нем начнет протекать ионный ток, причем положительно заряженные ионы – катионы будут двигаться к катоду (это в основном металлы и водород), а отрицательно заряженные ионы – анионы (хлор, кислород) – к аноду.


Что такое электролиз.

У анода анионы отдают свой заряд и превращаются в нейтральные частицы, оседающие на электроде. У катода катионы отбирают электроны у электрода и также нейтрализуются, оседая на нем, причем выделяющиеся на электродах газы в виде пузырьков поднимаются кверху. Электрический ток во внешней цепи представляет собой движение электронов от анода к катоду (рис. 1). При этом раствор обедняется, и для поддержания непрерывности процесса электролиза приходится его обогащать. Так осуществляют извлечение тех или иных веществ из электролита (электроэкстракцию).

Будет интересно➡ Правила безопасности при работе с электричеством

Если же анод может растворяться в электролите по мере обеднения последнего, то частицы его, растворяясь в электролите, приобретают положительный заряд и направляются к катоду, на котором осаждаются, тем самым осуществляется перенос материала с анода на катод. Так как при этом процесс ведут так, чтобы содержащиеся в металле анода примеси не переносились на катод, такой процесс называется электролитическим рафинированием.

Если электрод поместить в раствор с ионами того же вещества, из которого он изготовлен, то при некотором потенциале между электродом и раствором не происходит ни растворения электрода, ни осаждения на нем вещества из раствора. Такой потенциал называется нормальным потенциалом вещества. Если на электрод подать более отрицательный потенциал, то на нем начнется выделение вещества (катодный процесс), если же более положительный, то начнется его растворение (анодный процесс).


Электролиз медного купороса.

Значение нормальных потенциалов зависит от концентрации ионов и температуры. Принято считать нормальный потенциал водорода за нуль. Если в электролите имеются ионы разных металлов, то первыми на катоде выделяются ионы, имеющие меньший отрицательный нормальный потенциал (медь, серебро, свинец, никель), щелочноземельные металлы выделить труднее всего. Кроме того, в водных растворах всегда имеются ионы водорода, которые будут выделяться ранее, чем все металлы, имеющие отрицательный нормальный потенциал, поэтому при электролизе последних значительная или даже большая часть энергии затрачивается на выделение водорода.

Путем специальных мер можно воспрепятствовать в известных пределах выделению водорода, однако металлы с нормальным потенциалом меньше 1 В (например, магний, алюминий, щелочноземельные металлы) получить электролизом из водного раствора не удается. Их получают разложением расплавленных солей этих металлов. Нормальные электродные потенциалы веществ, указанные в табл. 1, являются минимальными, при них начинается процесс электролиза, практически требуются большие значения потенциала для развития процесса.

Разность между действительным потенциалом электрода при электролизе и нормальным для него потенциалом называют перенапряжением. Оно увеличивает потери энергии при электролизе.

С другой стороны, увеличивая перенапряжение для ионов водорода, можно затруднить его выделение на катоде, что позволяет получить электролизом из водных растворов ряд таких более отрицательных по сравнению с водородом металлов, как свинец, олово, никель, кобальт, хром и даже цинк. Это достигается ведением процесса при повышенных плотностях тока на электродах, а также введением в электролит некоторых веществ.

Течение катодных и анодных реакций при электролизе определяется следующими двумя законами Фарадея.

Масса вещества mэ, выделившегося при электролизе на катоде или перешедшего с анода в электролит, пропорциональна количеству прошедшего через электролит электричества Iτ: mэ = α/τ,здесь а – электрохимический эквивалент вещества, г/Кл.

Масса выделенного при электролизе вещества одним и тем же количеством электричества прямо пропорциональна атомной массе вещества А и обратно пропорциональна его валентности n: mэ = А / 96480n, здесь 96480 – число Фарадея, Кл х моль-1.

Интересно почитать: то такое датчик Холла.

Таким образом, электрохимический эквивалент вещества α= А / 96480n представляет собой массу вещества в граммах, выделяемую единицей проходящего через электролитическую ванну количества электричества – кулоном (ампер-секундой). Для меди А = 63,54, n =2, α =63,54/96480-2= 0,000329 г/Кл, для никеля α =0,000304 г/Кл, для цинка α=0,00034 г/Кл. В действительности масса выделившегося вещества всегда меньше указанной, что объясняется рядом побочных процессов, проходящих в ванне (например, выделением водорода на катоде), утечками тока и короткими замыканиями между электродами.

Читайте также:
Реферат на тему: Жидкие кристаллы и их применение, строение


Химические реакции при электролизе.

Таблица изменения веществ с помощью электролиза

Усиление восстановительных способностей веществ:

Na+ Mg2+ Al3+ Zn2+ Fe3+ Ni2+ Sn2+ Pb2+ H+ Cu2 Ag+
Натрий Магний Алюминий Цинк Железо Никель Олово Свинец Водород Медь Серебро

Усиление окислительных способностей веществ:

I- Br- Cl- OH- NO3- CO32- SO42-.
Йодид (соли, образованные йодоводородной кислотой) Бромид (соли, образованные бромоводородной кислотой) Хлорид (соли, образованные соляной кислотой) Гидроксид Нитрат (соли, образованные азотной кислотой) Карбонат (соли, образованные угольной кислотой) Сульфат (соли, образованные серной кислотой)
Катод (отрицательный) Анод (положительный)
Восстановление катионов после водорода Окисление анионов кислот, не содержащих кислорода
Восстановление катионов, имеющих среднюю активность Окисление анионов оксокислот
Восстановление наиболее активных катионов Окисление анионов гидроксидов
Восстановление катионов водорода

Правила электролиза водных растворов

Электролиз на катоде зависит только от положения металла в электрохимическом ряду напряжений:

  • если катион электролита стоит левее алюминия (включительно), на катоде восстанавливается вода с выделением водорода, а катионы металла остаются в растворе: 2H2O+2e–= H2↑+2OH– (Li…Al)
  • если катион электролита стоит между алюминием и водородом, на катоде восстанавливаются и вода, и катионы металла; Men++ne–= Me; 2H2O+2e– = H2↑+2OH– (Mn…Pb)
  • если катион электролита стоит правее водорода, на катоде восстанавливается только катионы металла: Men++ne–= Me (Cu…Au)
  • если в растворе электролита находится несколько металлов, первыми восстанавливаются катионы металла, который в ряду напряжений стоит правее остальных.
  • Электролиз на анодезависит только от материала, из которого изготовлен анод: в случае растворимого анода (металлы, которые окисляются в процессе электролиза – железо, медь, цинк, серебро) – всегда идет процесс окисления металла анода: Me-ne–= Men+
  • в случае нерастворимого анода (золото, платина, графит): идет процесс окисления аниона при электролизе растворов солей бескислородных кислот, за исключением фторидов: Acm-me–= Ac
  • идет процесс окисления воды в остальных случаях (электролиз оксикислот и фторидов) – анион остается в растворе: 2H2O-4e–= 4H++O2↑
  • при электролизе растворов щелочей окисляются гидроксид-ионы: 4OH–-4e–= 2H2O+O2↑
  • восстановительная активность анионов уменьшается в ряду (соответственно увеличивается способность окисляться):
  • I–; Br–; S2-; Cl–; OH–; SO42-; NO3–; F–

    Уравнения и схемы процессов электролиза, протекающих на катоде и аноде

    Электролиз воды

    Вода является слабым электролитом, из-за чего процесс будет протекать очень медленно.

    Общее уравнение реакции: 2H2O => 2H2
    + O2.

    Схема водного электролиза:

    Анод Катод
    2H2O => O2 + 4H+ + 4e– 4H+ + 4e– => 2H2
    3H2O => O3 + 6e– + 6H+ O2 + 2H2O + 2e– => H2O2 + 2OH–

    Электролиз расплавов солей

    Данную разновидность реакции можно рассмотреть на примере расплава гидроксида натрия, то есть NaOH.

    Na+ + 1ē => Na0 (восстановление)

    Как используется солнечная энергия

    1. Где используют солнечную энергию?
    2. Использование солнечной энергии: особенности
    3. Пассивные системы
    4. Активные системы
    5. Фотоэнергия
    6. Солнечные фотоэлементы
    7. Солнечные коллекторы
    8. Солнечные батареи
    9. Материалы
    10. Преимущества солнечных установок

    Что мы знаем про использование солнечной энергии на земле и про ее перспективы? Все мы, даже не имея дома солнечных батарей, активно пользуемся энергией солнца. Так, оно нагревает своим теплом нашу планету и не дает нам умереть от холода, осветляет поверхность Земли. Задумайтесь: всего один квадратный километр способен излучить почти 63000 кВт энергии. Чтобы понять, сколько это, представьте, что это равно работе целого миллиона электрических лампочек! Таким образом, каждую секунду солнце излучает 80 000 миллиардов кВт. Впечатляющие цифры.

    Без энергии всего человечества попросту бы не существовало. Вспомним школьные годы и закон сохранения энергии, который мы изучали на уроках физики: энергия не возникает из ниоткуда и не может исчезнуть бесследно. Ее можно получить из природных ресурсов. Например, из угля, природного газа или урана. Ее превратят в необходимое нам тепло или свет. И все же, главным источником энергии было и остается солнце.

    Разумеется, человеку было бы глупо не воспользоваться солнечной энергией, как альтернативой электрической, поскольку она имеет ряд преимуществ. Во-первых, она самовозобновляема, то есть участие человека абсолютно не требуется, во-вторых, бесплатна, в-третьих, может использоваться для нужд как мощных заводов, в хозяйстве, так и в быту среднестатистического пользователя, в-четвертых, безопасна для окружающей среды и здоровья человека. Чем ближе местность к югу, тем перспективнее использование солнечных батарей. Так, к примеру, в Израиле около 90 % домов имеют подобное оборудование.

    Узнайте больше о самовозобновляемой и бесплатной энергии будущего. Солнечные батареи в действии.

    Именно поэтому одной из главных задач ученых мира остается изобретение способов максимально полного и эффективного использования энергии большого светила. Поистине, это будущее всего человечества, ведь природные ресурсы не вечны.

    Читайте также:
    Опыты по физике для детей с объяснением

    Где используют солнечную энергию?

    Год за годом люди все более активно используют энергию солнца. Если еще пять лет тому назад ее использовали для подогрева воды на даче, например, то сейчас возобновляемый источник энергии используют повсеместно промышленные объекты, а также пользователи для освещения своих домов и подогрева воды.

    Использование солнечной энергии — ключевые сферы:

    • В аграрном хозяйстве: для электрообеспечения парников ангаров и т.п.
    • На спортивных объектах: для электроснабжения.
    • В медицинских учреждениях: для энергоснабжения и автономности от перепадов напряжения и плановых отключений электричества.
    • В авиации и космической промышленности.
    • Для уличного освещения в городах.
    • Для электрификация отдаленных населенных пунктов.
    • В жилых домах: для их электроснабжение, отопление и снабжение горячей водой.
    • Для бытовых нужд.

    Солнечные панели в авто — Honda Fit

    Использование солнечной энергии: особенности

    Для превращения излучаемого солнцем света в тепловую энергию используют пассивные и активные системы. Как их различать? Пассивные системы – это здания, которые построены с применением таких стройматериалов, которые максимально эффективно поглощают солнечную энергию. Активные же – это коллекторы, фотоэлементы и солнечные батареи.

    Пассивные системы

    Как уже упомянуто выше, это так называемые «солнечные здания». Их строят, учитывая особенности климатической зоны, в которой они расположены. Материалы, из которых они строятся, дают возможность использования всей солнечной энергии для освещения, обогрева, охлаждения помещений. Как жилых, так и промышленных. Что же это за материалы и технологии? Это изоляция, деревянный пол, поглощающий свет от поверхности, расположение здания фасадом к югу.

    Построенные таким образом солнечные здания максимально используют солнечное излучение, к тому же довольно быстро окупаются, снижая энергозатраты пользователей. Счастливые обладатели таких домов становятся энергетически независимы, а также живут в экологически чистых условиях.

    Активные системы

    В данную подкатегорию входят коллекторы, солнечные батареи, аккумуляторы, насосы, трубопроводы для горячей воды и теплоснабжения. Их располагают на крышах или в подвалах.

    Фотоэнергия

    Это один из способов использования излучения солнца: постоянный ток, который вырабатывается при попадании солнечного излучения. Это преобразование происходит в фотоячейках. Фотоячейки имеют двухслойную структуру. Один полупроводник располагается ниже и относится к р-типу, второй находится выше и относится к n-типу.

    Электроны второго проводника поглощают излучение солнечной энергии, после чего покидают орбиты, переходя в зону первого проводника. Именно в этот момент появляется электронный поток – фототок.

    Солнечные фотоэлементы

    Используются они для более эффективного применения солнечного излучения. Они состоят из полупроводников, которые, при попадании на их поверхность солнечных лучей, приходят в движение и таким образом вырабатывают ток. Из-за отсутствия химических реакций при выработке тока, срок их службы достаточно долгий. Один из способов использования это фотоэлемент для включения света.

    Фотоэлектрические преобразователи энергии солнца легки в использовании благодаря маленькому весу, легкостью в обслуживании. К тому же, являются очень эффективными при использовании энергии солнца.

    Солнечные коллекторы

    Принцип их работы заключается в преобразовании солнечного излучения в тепло. Коллекторы можно разделить на группы:

    • Вакуумные.Используются в быту, когда вам нужна горячая вода. Состоят из стеклянных трубочек, которые нагреваются от солнечных лучей. В свою очередь, они уже нагревают воду.
    • Плоские. Довольно распространены среди пользователей альтернативных источников энергии. Удобны в использовании для бытовых отопительных потребностей, а также для подогрева воды.
    • Интегрированные. Считаются наиболее простыми и используются в газовых котлах для подогрева воды. Подогретая вода накапливается в баке для последующего потребления.
    • Воздушные. Предназначены для воздушного отопления, рекуперации воздушных масс и для осушительных установок.

    Для того, чтобы в последующем использовать солнечную энергию, вначале коллекторы накапливают ее в модулях, которые ставятся на крыше. Их конструкция следующая: это стеклянные трубки и пластины, окрашенные в черный цвет для лучшего поглощения излучения солнца.

    Солнечные батареи

    Что такое солнечная батарея? Давайте разбираться. Она состоит из модулей, которые принимают и преобразуют энергию солнца, в том числе тепловую. Батареи генерируют электрическую энергию постоянно либо аккумулируют ее для дальнейшего использования.Чаще всего используют солнечные батареи с помощью аккумуляторов – химических источников тока. Первое их применение зафиксировано в космическом спутнике.

    Материалы

    Для производства большинства батарей используют кремний, который стоит недешево. Потому первичная покупка влетит вам в копеечку, что впрочем, окупится за несколько лет. У солнечных батарей множество достоинств. Это простота конструкции батарей, легкость в установке, нетребовательность в обслуживании, долгая эксплуатация, эргономичность. Работают они от аккумуляторов. Главное, о чем не стоит забывать: они должны работать на открытых участках, не затемненных деревьями или зданиями. Также не рекомендуют забывать об очищении батарей от пыли и прочих загрязнений. При правильной эксплуатации солнечных батарей, они прослужат вам верой и правдой не один десяток лет. Энергию они вырабатывают как в течение светового дня, так и при пасмурных погодных условиях. Последнее время цена батарей неуклонно падает, что говорит про перспективы их использования.

    Читайте также:
    Манометр - прибор для измерения давления, класс точности

    Преимущества солнечных установок

    Конечно же, стоит отметить явные достоинства таких установок:

    • Они неисчерпаемы, потому никогда не закончатся.
    • Абсолютно бесплатно потребляют солнечную энергию.
    • Очень безопасны в эксплуатации.
    • Обладают таким качеством, как автономность, так как работают от аккумуляторов.
    • Крайне экономичны, ведь потратитесь вы только раз, приобретая их.
    • Вы независимы от скачков напряжения в электросети или от плановых отключений.
    • Установки долговечны при правильной эксплуатации.
    • Довольно просты как в использовании, так и в их обслуживании.

    Мы неспроста закончили статью преимуществами солнечных установок, ведь благодаря ним, они с каждым годом становятся всё популярнее. Неудивительно: вы хорошенько сэкономите, купив такое чудо техники, а еще защитите свою семью и их здоровье, ведь установки не наносят ни малейшего вреда человеку, а солнечная энергия практически вечная и бесплатная. Использование солнечной энергии – поистине наше светлое будущее! А перспективы безграничны.

    Использование энергии солнца на Земле — способы и преимущества

    Ввиду активизации программ по сокращениям вредных выбросов в атмосферу, а также постоянно повторяющиеся экономические кризисы, связанные с ценами на традиционные энергоносители, большое значение в настоящее время имеют возобновляемые и экологически чистые источники энергии. Одним из них является солнечная. Использование энергии солнца на Земле известно с древних времен, но лишь в последние десятилетия оно приобрело глобальный масштаб.

    Неисчерпаемый источник

    Согласно определению, солнечная энергия — это электромагнитное излучение всех частот от звезды системы, которое достигает планеты Земля. Большая его доля приходится на видимый и инфракрасный спектры. С древних времен люди научились использовать эту энергию, в первую очередь, как источник тепла. Лишь с первой половины XIX века люди начали активно преобразовывать солнечный свет в электричество, что стало возможным благодаря созданию специальных устройств — фотоэлементов.

    Цифры и данные

    Выгода использования солнечной энергии на Земле базируется на достаточно весомом факте: за этим источником ближайшее будущее. Доказать это утверждение несложно, если учесть следующие данные:

  • За один год планета получает от Солнца приблизительно 3,85*10 24 Дж энергии.
  • Благодаря использованию направленных потоков воздушных масс (ветра) можно получать 2,25*10 21 Дж.
  • Вся биомасса планеты использует около 3*10 21 Дж энергии ежегодно. Основная ее доля приходится на тропические леса Южной Америки.
  • Электричество и органические энергетические источники, которые человек использует для своих нужд, в среднем составляют 5*10 20 Дж в год.

    Эти данные показывают, что развитие современной экономики и увеличение энергопотребления сполна может быть обеспечено за счет энергии солнца, ведь она на 4 порядка (в 10000 раз) превышает существующие нужды. В 2002 году было вычислено, что один солнечный час на планете способен обеспечить энергией все человечество на 1 год. В свою очередь, всего 18 ясных дней достаточно, чтобы получить столько энергии, сколько ее запасено по всему миру в виде любых других ресурсах в настоящее время.

    Цифры также демонстрируют, что вся гигантская зеленая масса планеты использует лишь 0,08% всей доступной энергии электромагнитного излучения. Эти данные говорят о неисчерпаемости рассматриваемого источника и огромных возможностях для развития глобальной экономики, которые он предоставляет.

    Согласно прогнозам экологической организации мирового значения Гринпис, к 2030 году около 2/3 всего населения планеты будут использовать солнечные лучи в качестве основного энергетического источника.

    Прямое и рассеянное излучение

    Около 30% электромагнитного излучения, которое достигает верхних слоев атмосферы планеты, рассеивается и излучается обратно в космос. Далее, при прохождении толщи атмосферы происходит дальнейшее рассеивание света на облаках. Наконец, нагреваясь, поверхность суши и океанов также излучает электромагнитные волны низких частот (инфракрасный спектр).

    Около 1000 Вт/м 2 энергии падает в среднем на поверхность Земли. Это прямое излучение. Его можно теоретически использовать для концентрации и перенаправления для генерации полезного тепла или электроэнергии. В настоящее время львиная доля прямого излучения уходит на нагрев поверхности и последующее ее остывание в виде рассеянного испускания электромагнитных волн.

    Рассеянное излучение играет важную роль в поддержании жизни на планете. Благодаря ему происходит нагрев нижних слоев атмосферы и их подъем в верхние слои в результате явления конвекции. Последующее остывание теплого воздуха приводит к образованию облаков, дождям и ветрам.

    Основные преимущества

    Основные преимущества в сравнении с традиционными источниками:

  • Неисчерпаемость. Речь о возобновлении не идет, поскольку Солнце будет светить еще несколько миллиардов лет.
  • Отсутствие какого-либо загрязнения окружающей среды. По сути, энергии Солнца обязана наша планета со всем ее многообразием живых существ.
  • Сокращение вредных выбросов и замедление процесса глобального потепления, который во многих регионах уже ощущается непосредственно в виде погодных аномалий и подъема уровня океана.
  • Возможность развития регионов, которые находятся на больших расстояниях от индустриально развитых центров. В таких местах может не быть собственных полезных ископаемых, а их привоз является экономически нецелесообразным. Как правило, многие из этих регионов планеты являются островными государствами, которые расположены вдали от континентов.
  • Простота использования и преобразования. Поскольку в настоящее время развивается активно направление преобразования энергии солнца в электрическую, то последнюю можно использовать для широкого спектра нужд.

    Современное состояние развития устройств для преобразования солнечной энергии позволяет создавать как крупные сети для мегаполисов, так и изолированные станции, обеспечивающие потребности относительно небольших поселений вплоть до отдельных домов.

    Способы использования

    Два основных способа применения солнечного электромагнитного излучения:

    • пассивный;
    • активный.
    Читайте также:
    Удельная теплота парообразования 💨 обозначение и единицы измерения, основные формулы, физический смысл, предназначение и способы применения в науке, таблица значений

    Пассивный метод

    К пассивному относится использование солнечного света в быту непосредственно, то есть без его преобразования в другие виды энергии с помощью каких-либо устройств и механизмов. Этот способ включает различные системы проектирования зданий и сооружений, водохранилищ и солнечных кухонь, которые позволяют определенным образом перераспределять энергию падающих лучей и улучшать естественную вентиляцию помещений или поглощать тепло в дневное время суток и отдавать его в ночные часы. Такая архитектура получила название биоклиматической.

    Активное применение

    В дополнение к тому, где используется солнечная энергия, следует отметить активное ее применение. Оно подразделяется на два типа:

    • термический;
    • фотоэлектрический.

    О термическом активном использовании света мало информации, поскольку он в настоящее время занимает менее 1% от всей рассматриваемой индустрии. Суть его заключается в накоплении тепла в специальных устройствах, которые принимают лучи, но сами практически не излучают. Вся поступившая энергия в эти нагреватели используется для нагрева воды или пара, который впоследствии можно применить для домашних нужд (обогрев, приготовление пищи и так далее).

    Некоторые термоустройства позволяют получать температуры в несколько сотен градусов (300−500 °C). В их дизайне применяют современные материалы с заранее заданными оптико-термическими свойствами (пластмассы, стекло).

    Фотоэлектрический способ использования солнечных лучей главным образом базируется на применении так называемых фотоэлементов и панелей, из которых они собираются. Именно это направление энергетики получило колоссальное развитие в последнее десятилетие во многих развитых странах (США, Германия, Великобритания, Япония, Испания). Выработка солнечной электроэнергии в глобальном масштабе в период с 2006 по 2018 год увеличилась в десятки раз и составила более 500 ГВт.

    Фотоэлектрический элемент

    Он представляет собой ячейку, созданную с помощью современных технологий. Она включает в себя активный полупроводник (в основном кремний и его соединения p и n-типа), прозрачное стекло специального типа и алюминиевый корпус для обеспечения механической прочности элемента.

    Падающий фотон возбуждает электрон, переводя его из валентной зоны через запрещенную в зону проводимости. Этот элементарный акт приводит к генерации пары свободных носителей заряда электрон-дырка. Наличие электростатического поля внутри полупроводника приводит к разделению генерированного заряда через p-n переход, что создает разность потенциалов. Последняя используется для получения постоянного электрического тока.

    В зависимости от дизайна и стоимости полупроводники фотоэлементов бывают трех типов:

    • монокристаллические;
    • поликристаллические;
    • аморфные.

    Их стоимость падает сверху вниз по списку, а КПД преобразования возрастает. Аморфный кремний применяют в дешевых устройствах, например, в недорогих часах и калькуляторах.

    Самый высокий КПД фотоэлемента, который в настоящее время удалось получить, составляет 20%. В подавляющем же большинстве случаев этот показатель около 15%. Связано это с тем, что большая доля солнечного света имеет энергию большую, чем необходимо для активации работы устройства, поэтому львиная ее доля расходуется на тепловые колебания решетки полупроводника, а не на генерацию электричества.

    Развитие отрасли в современном мире

    Ввиду повышения требований к экологичности используемых источников энергии в последнее время, солнечная индустрия стала активно набирать популярность в XXI веке. Сейчас многие электронные устройства и аппараты используют солнечные лучи либо в качестве основного источника, либо как дополнительный. Примером могут служить гибридные автомобили.

    В 2015 году солнечный вид энергии занял третье место среди возобновляемых источников, после гидростанций и ветряных мельниц. Лидерами в этом направлении являются Германия, Китай, Япония и США. Так, в июне 2014 года в Германии благодаря использованию солнечных батарей удалось получить 50% всей электроэнергии, потребляемой страной в течение суток.

    Таким образом, тема солнечной энергетики является актуальной в связи с частыми экономическими кризисами традиционных энергоресурсов и с учетом тяжелой экологической обстановки во многих регионах мира. Многие ученые считают энергию Солнца ближайшим будущим человеческой цивилизации.

    Способы и особенности использования энергии солнца на земле

    Издревле человечество пользуется солнечной энергией. Благодаря ей поддерживается жизнь на нашей планете. Воздействие солнечных лучей на поверхность нашей вращающейся планеты приводит к неравномерному нагреву водной поверхности океанов, морей, рек, озер и суши материков. Возникающие перепады атмосферного давления, приводящие в движение воздушные массы, способствуют созданию условий жизни многообразным видам флоры и фауны. По сути, солнце своей энергией является источником жизни.

    В последнее время развиваются технологии использования этой нескончаемой энергии, которая может легко заменить традиционные источники энергии (уголь, газ, нефть), требующие больших затрат для их использования в различных климатических условиях. Применение солнечных установок имеет ряд преимуществ, которые несравнимы с другими источниками энергии. Используя некоторые из преимуществ, компания Светон http://220-on.ru/ успешно решает задачу по обеспечению комфортного качества жизни за счёт установок автономного электроснабжения и систем бесперебойного питания для владельцев загородной недвижимости.

    Читайте также:
    Парообразование 💧 описание процессов испарения и кипения, свойства, виды превращений жидкости, условия образования пара, формулы, примеры

    Основные преимущества

    Неисчерпаемость запасов энергии, которая даётся практически даром. Используемые установки полностью безопасны и автономны. Можно отметить их экономичность, поскольку покупается только оборудование установки. Кроме того, обеспечивается стабильность электроснабжения без каких-либо скачков напряжения. Дополним ещё такими показателями, как большой срок эксплуатации и простота в использовании.

    Если ещё несколько лет назад в основном солнечное тепло использовалось для естественного подогрева воды под лучами солнца, то в настоящее время можно перечислить целый ряд сфер человеческой деятельности, где непосредственно применяется солнечная энергия.

    Области применения солнечной энергии

    Во-первых, это в аграрном секторе народного хозяйства – для выработки электроэнергии, обогрева теплиц, парников, помещений и построек.

    Во-вторых, для обеспечения электричеством учреждений медицины, здравоохранения и спорта.

    В-третьих, в авиации и космических аппаратах.

    В-четвёртых, в качестве световых источников в ночное время в городах.

    В-пятых, в снабжении электричеством населённых пунктов.

    В-шестых, в обеспечении электропитания оборудования для снабжения горячей водой жилых помещений.

    В-седьмых, для обеспечения бытовых нужд.

    Существуют пассивные и активные способы превращать солнечный свет в тепловую энергию.

    Пассивные способы превращать солнечную энергию в тепловую

    Этот способ основан на том, что учитываются местный ландшафт и климат при постройке зданий. При их строительстве изучаются особенности климата, что позволяет применять такие ресурсы строительных материалов и технологий, чтобы получить максимальный эффект (особенно в жарких странах) от строящегося объекта в потреблении электроэнергии и обеспечении экологической безопасности постройки. Поэтому в жарких странах стремятся эффективно использовать местные условия для таких строений.

    Активные способы использования солнечной энергии

    Специальные коллекторы и фотоэлементы, насосы, аккумуляторы, различные трубопроводы теплоснабжения являются теми инструментами, благодаря которым преобразуется энергия солнца. Рассмотрим солнечные коллекторы, преобразующие энергию солнца несколькими способами, которые определяют соответствующий тип коллектора.

    1. Для бытовых нужд широко используется коллектор плоский, который нагревает воду под воздействием солнечных лучей в соответствующих емкостях.

    2. Для высоких температур применяют вакуумные солнечные коллекторы, которые действуют посредством нагрева воды, проходящей по стеклянным трубкам, находящимся в освещаемой солнцем зоне. Такие установки применяют в бытовых условиях.

    3. В осушительных установках применяются коллекторы воздушного типа, нагревающие воздушные массы под солнечными лучами.

    4. Коллекторы интегрированного типа, в которых собираются подогретые в бытовых системах воды в общую емкость с последующим использованием для различных нужд, например, для газовых котлов.

    Фотоэлемент (солнечный элемент, батарея) представляет собой полупроводник, в котором при свете возникает ток без каких-либо химических реакций, обеспечивая достаточно длительный срок работы. Такие солнечные элементы (батареи) широко используются в космической области, но могут широко применяться в других.

    Солнечные батареи очень экономичны и приобретают все большую популярность в бытовых условиях. Например, на фермерских, приусадебных хозяйствах все больше проявляют к ним интерес. Кроме того, сегодня осваиваются труднодоступные места новых регионов и сельскохозяйственных угодий, особенно в азиатской части нашей страны. Автомобильный и авиационный транспорт также имеет в своей перспективе шанс применять солнечные батареи. Необходимо также выделить такое качество, как экологическую чистоту данных систем, которые не наносят ущерб здоровью.

    Способы и особенности использования энергии солнца на земле

    Солнце является одним из возобновляемых альтернативных источников энергии. На сегодняшний день альтернативные источники тепла широко используют в аграрном хозяйстве и в бытовых нуждах населения.

    • Сферы использования солнечной энергии
    • Особенности применения
    • Пассивные системы
    • Активные системы
    • Солнечные фотоэлементы
    • Солнечные коллекторы
    • Преимущества солнечных установок

    Использование энергии солнца на земле играет важную роль в жизни человека. При помощи своего тепла солнце, как источник энергии, нагревает всю поверхность нашей планеты. Благодаря его тепловой мощности дуют ветра, нагреваются моря, реки, озера, существует все живое на земле.

    Возобновляемые источники тепла, люди начали использовать еще много лет назад, когда современных технологий еще не существовало. Солнце является самым доступным на сегодняшний день поставщиком тепловой энергии на земле.

    Сферы использования солнечной энергии

    С каждым годом применение энергии солнца набирает все больше популярности. Еще несколько лет назад ее применяли в целях подогрева воды для дачных домов, летних душей, а сейчас возобновляемые источники тепла применяют для выработки электричества и горячего водоснабжения жилых домов и промышленных объектов.

    На сегодняшний день возобновляемые источники тепла используют в следующих сферах:

    • в аграрном хозяйстве, в целях электрообеспечения и отопления парников, ангаров и других построек;
    • для электроснабжения спортивных объектов и медицинских учреждений;
    • в сфере авиационной и космической промышленности;
    • в освещении улиц, парков, а также других городских объектов;
    • для электрификации населенных пунктов;
    • для отопления, электроснабжения и горячего водоснабжения жилых домов;
    • для бытовых нужд.
    Читайте также:
    Закон преломления света ℹ формула и формулировка, физический смысл показателя преломления, принцип распространения лучей

    к содержанию ↑

    Особенности применения

    Свет, который излучает солнце на земле, при помощи пассивных, а также активных систем превращается в тепловую энергию. К пассивным системам относятся здания, при строительстве которых применяют такие стройматериалы, которые наиболее эффективно поглощают энергию солнечной радиации. В свою очередь, к активным системам относятся коллекторы, преобразовывающие солнечную радиацию в энергию, а также фотоэлементы, конвертирующие ее в электричество. Рассмотрим подробнее как правильно использовать возобновляемые источники тепла.

    Пассивные системы

    К таким системам относят солнечные здания. Это здания, построенные с учетом всех особенностей местной климатической зоны. Для их возведения применяют такие материалы, которые дают возможность максимально использовать всю тепловую энергию для обогрева, охлаждения, освещения жилых и промышленных помещений. К ним относят следующие строительные технологии и материалы: изоляцию, деревянные полы, поглощающие свет поверхности, а также ориентацию здания на юг.

    Такие солнечные системы позволяют осуществить максимальное использование солнечной энергии, к тому же они быстро окупают расходы на их возведение за счет снижения энергозатрат. Они являются экологически чистыми, а также позволяют создать энергетическую независимость. Именно из-за этого использование таких технологий очень перспективно.

    Активные системы

    К этой группе относят коллекторы, аккумуляторы, насосы, трубопроводы для теплоснабжения и горячего водоснабжения в быту. Первые устанавливают непосредственно на крышах домов, а остальные располагают в подвальных помещениях, чтоб использовать их для горячего водоснабжения и теплоснабжения.

    Солнечные фотоэлементы

    Чтоб более эффективно реализовывать всю солнечную энергию применяют такие источники энергии солнца, как фотоэлементы, или как их еще называют — солнечные элементы. На своей поверхности они имеют полупроводники, которые, при воздействии на них лучей солнца, начинают двигаться, и тем самым вырабатывают электроток. Такой принцип выработки тока не содержит никаких химических реакций, что позволяет фотоэлементам работать достаточно долго.

    Такие фотоэлектрические преобразователи как источники энергии солнца легко использовать, так как они имеют небольшой вес, просты в обслуживании, а также являются очень эффективными в использовании солнечной мощности.

    На сегодняшний день солнечные батареи, как источник энергии солнца на земле, используют для выработки горячего водоснабжения, отопления и для производства электричества в теплых странах, таких как Турция, Египет и страны Азии. В нашем регионе солнце источник энергии применяют для снабжения электричеством автономных систем электропитания, маломощной электроники и приводов самолетов.

    Солнечные коллекторы

    Использование солнечной энергии коллекторами заключается в том, что они преобразовывают радиацию в тепло. Их разделяют на следующие основные группы:

    • Плоские солнечные коллекторы. Являются самыми распространенными. Их удобно использовать для бытовых отопительных нужд, а также при подогреве воды для горячего водоснабжения;
    • Вакуумные коллекторы. Их используют для бытовых нужд, когда необходима вода высокой температуры. Они состоят из нескольких стеклянных трубок, проходя через которые лучи солнца нагревают их, а они, в свою очередь, отдают тепло воде;
    • Воздушные солнечные коллекторы. Их используют для воздушного отопления, рекуперации воздушных масс и для осушительных установок;
    • Интегрированные коллекторы. Самые простые модели. Их используют для предварительного подогрева воды, например, для газовых котлов. В быту подогретая вода собирается в специальном баке — накопители и далее используется для различных нужд.

    Использование энергии солнца коллекторами осуществляется путем накапливания ее в так называемых модулях. Они устанавливаются на крыше зданий и состоят из стеклянных трубок и пластин, которые, в целях поглощения большего объема солнечного света, окрашивают в черный цвет.

    Солнечные коллекторы используют для подогрева воды для горячего водоснабжения и отопления жилых домов.

    Преимущества солнечных установок

    • они полностью бесплатны и неисчерпаемы;
    • имеют полную безопасность в использовании;
    • автономны;
    • экономичны, так как расход средств осуществляется только лишь на приобретение оборудования для установок;
    • их использование гарантирует отсутствие скачков напряжения, а также стабильность в электроснабжении;
    • долговечны;
    • просты в использовании и в обслуживании.

    Использование солнечной энергии при помощи таких установок с каждым годом набирает популярности. Солнечные батареи дают возможность сэкономить не малые деньги на отоплении и горячем водоснабжении, к тому же они являются экологически чистыми и не наносят урон здоровью человека.

    Прорыв в будущее — основные направления использования энергии солнца на земле

    Обновлено: 3 января 2021

    • Где используется солнечная энергия?
    • Особенности применения
    • Пассивные системы
    • Активные системы
      • Солнечные фотоэлементы
      • Солнечные коллекторы
    • Преимущества солнечных установок
    • Проблемы использования солнечной энергии
    • Перспективы развития
    • Рекомендуемые товары

    Где используется солнечная энергия?

    О том, чтобы использовать солнечную энергию в своих целях, человек начал задумываться сравнительно недавно, хотя на практике пользовался ей на протяжении всей своей истории. Идея об аккумулировании и практическом применении возникла в начале XX века, но технологических возможностей для этого на то время не было. Прорыв совершился в конце века, когда появились фотоэлектрические панели, способные производить электроэнергию в ощутимых количествах. Вопрос важный и заслуживает подробного рассмотрения.

    Читайте также:
    Манометр - прибор для измерения давления, класс точности

    Использование энергии Солнца на земле является повсеместным, хоть и неосознанным явлением. Оно настолько обыденно и привычно, что люди редко задумываются о возможностях и перспективах солнечной энергетики. Однако, специалисты в разных отраслях научной и производственной деятельности давно разрабатывают технологии, позволяющие получать бесплатную и неиссякаемую энергию.

    Если несколько десятилетий назад все ограничивалось нагревом воды в емкостях для летнего душа на дачном участке, то сегодня существуют различные способы использования солнечной энергии, наиболее развитые в следующих отраслях:

    • космос и авиация;
    • сельское хозяйство;
    • обеспечение энергией спортивных и медицинских объектов;
    • освещение участков частных домов или городских улиц;
    • использование в быту;
    • электрификация экспедиций, передвижных исследовательских или военных пунктов и т.д.

    Этот список не будет полным, если не назвать СЭС, электростанции, где используется солнечная энергия. В последние годы их немало построено в США, Испании, ЮАР и других странах. Их мощность пока еще не способна превзойти уровень ГЭС, но технологии не стоят на месте и перспективы развития весьма многообещающие. Можно с уверенностью сказать, что через пару десятков лет на вопрос: «Где используется энергия Солнца на Земле?» можно будет услышать ответ: «Везде».

    Особенности применения

    Свет и тепло Солнца используются с помощью различных технологических методик. Как правило, выработка электроэнергии имеет целью питание отдельных или массовых потребителей, а тепловая энергия служит для обогрева жилья, теплиц, промышленных и общественных помещений.

    Использование солнечной энергии на Земле ведется по двум направлениям: пассивное и активное. Оба способа имеют свои особенности и возможности, которые следует рассмотреть внимательнее.

    Пассивные системы

    Пассивные системы — это различные сооружения или строения, в которых использование энергии Солнца происходит путем потребления. Например, существуют дома, построенные из специальных материалов, которые способны поглощать или перерабатывать полученную тепловую энергию. Обогрев таких зданий становится проще или в нем вовсе исчезает необходимость.

    Необходимо понимать, что в виду имеются не какие-то современные и продвинутые материалы, созданные на высокотехнологическом оборудовании. Дома, образующие пассивные системы, создаются из обычной древесины, теплоизолирующих и светоизолирующих панелей. Даже обычная ориентация окон дома на южную сторону автоматически переводит дом в разряд пассивных гелиосистем.

    Первым в истории зафиксированным случаем, когда использование солнечной энергии было сознательным действием, была постройка дома Плинием Младшим в Италии (100 г. Н. Э.). Слюдяные окна оказались эффективным теплоизолятором, способным удерживать тепловую энергию, полученную от Солнца.

    В современном мире интерес к постройке зданий-пассивных гелиосистем то возрастает, то вновь падает. Энергетический кризис вынуждает активно искать способы получения дешевой альтернативной энергии, но при улучшениях экономической обстановки ситуация разворачивается в обратную сторону. Однако, общая обстановка демонстрирует постоянное развитие и продвижение гелиосистем в технике и быту.

    Активные системы

    Активные солнечные системы получают энергию и преобразуют ее тем или иным способом. В данном случае используются специально изготовленные приспособления и устройства, для которых получение, преобразование и передача энергии является основной и единственной задачей, а не дополнительной функцией, как у пассивных гелиосистем. Существуют довольно простые и более сложные конструкции, выполняющие разные задачи. По функционалу их можно разделить на фотоэлектрические элементы и солнечные коллекторы.

    Первые занимаются выработкой электрического тока из энергии, полученной от нашего светила. Они обладают широкими возможностями и встречаются практически везде, где применяют энергию Солнца.

    Вторые — коллекторы — используются только как источник тепловой энергии для отопительных систем частных домов или иных помещений относительно небольшого размера. И те, и другие устройства обладают собственными преимуществами и недостатками. Рассмотрим их подробнее.

    Солнечные фотоэлементы

    Фотоэлектрические элементы получают солнечную энергию и вырабатывают из нее электрический ток. Такова общая схема, на практике все несколько сложнее. Солнечные лучи, попадая на поверхность фотоэлементов, воздействуют на кремниевые пластины, в которых начинается процесс замещения электронов. Они начинают активно совершать p-n переход, т.е. появляется постоянный фототок. Остается только припаять провода к соответствующим контактам, и можно снимать постоянное напряжение определенной величины. Если собрать такие элементы в батарею, то в результате можно получать вполне существенный ток, пригодный для зарядки аккумуляторов или практического использования.

    Выработка тока фотоэлементами нестабильна, зависит от внешних факторов — погоды, времени года и суток, наличия облачности. Кроме того, солнечные батареи дают постоянный ток. Для обеспечения потребителей электротоком со стандартными параметрами необходимо преобразовать полученное напряжение.

    Поэтому обычный состав комплекса выглядит следующим образом:

    Работа системы заключается в приеме солнечной энергии фотоэлементами и сбрасывании напряжения на аккумуляторы. Уровень заряда находится под управлением контроллера, который выполняет функции диспетчера и регулирует режим заряда и отдачи энергии. Преобразование постоянного тока в переменный выполняет инвертор, с которого питание подается на стандартные приборы потребления. Использование солнечной энергии таким способом наиболее эффективно, так как в результате получается универсальный вид, пригодный для питания большого количества установок, приборов и устройств.

    Фотоэлементы, или солнечные батареи, как их называют в обиходе, бывают нескольких видов: кремниевые и пленочные.

    Количество кремния в окружающей природе очень велико, чем и объясняется популярность этого типа фотоэлементов. Существуют разные виды кремниевых солнечных батарей:

    1. Монокристаллические. Их КПД приближается к 20%, что для современных фотоэлементов весьма высокий показатель. Производятся из очищенного материала, монокристалла, разрезанного на тонкие пластинки. Внешне такие панели похожи на соты или ячейки черного цвета. Самые дорогие и качественные
    2. Поликристаллические. При изготовлении используется срез из медленно охлажденного расплава кремния. Полученные пластинки состоят из множеств кристаллов, ориентированных в разные стороны. КПД — до 18%. Цвет ячеек синий, отличить их легко. Стоимость заметно ниже, чем у монокристаллических панелей
    3. Аморфные. Представляют собой слой силана (кремневодорода), нанесенного на гибкую подложку. КПД всего 5%, но способность поглощать солнечные лучи намного выше — почти в 20 раз, поэтому аморфные панели весьма хороши для пасмурной погоды. Стоимость самая низкая из всех кремниевых видов
    Читайте также:
    Равноускоренное движение - определение и график, путь, примеры

    Пленочные батареи производятся из различных полимеров, способных демонстрировать полупроводниковый эффект. Их разрабатывают с целью снижения себестоимости производства фотоэлементов, а также для улучшения характеристик панелей. Существуют разные виды:

    • на основе теллурида кадмия;
    • на базе селенида меди-индия;
    • на полимерной основе.

    Пока пленочные образцы уступают кремниевым как по КПД, так и по остальным показателям (кроме цены), но производители не теряют бодрости и уверяют пользователей в скором изменении ситуации.

    Использование фотоэлементов для производства электротока позволяет получать количество энергии, достаточное для питания любых потребителей, главное — достаточное количество панелей. В этом заключается одно из основных преимуществ солнечной энергетики — способность расширяться путем наращивания количества светоприемных элементов, а не с помощью замены всего оборудования.

    Солнечные коллекторы

    Эти устройства действуют по совершенно иному принципу. Они не используют высокотехнологичных материалов, получая от Солнца только тепловую энергию. Принцип действия коллекторов основан на способности солнечных лучей заметно нагревать предметы. Наиболее простая модель представляет собой плоский ящик черного цвета, накрытый прозрачной крышкой. Темная поверхность принимает солнечное тепло, нагревается, но отдавать его в окружающую атмосферу не может — мешает эффект парника, образованный прозрачной крышкой. На практике конструкции солнечных коллекторов несколько отличаются:

    1. Открытые. Самые простые (если не примитивные) приемники, представляющие собой продолговатые лотки из черной пластмассы, наполненные водой. Лотки нагреваются и отдают тепло воде. Которая используется для летнего душа или подогрева воды в бассейне. Этот вид не может похвастаться ни КПД, ни долговечностью, но простота и возможность сделать открытые коллекторы самостоятельно дали определенную популярность
    2. Трубчатые. Приемниками энергии являются вакуумные стеклянные трубки. Они имеют коаксиальную конструкцию (тип «труба в трубе», между ними вакуум для теплоизоляции). Соединяются в распределитель и подключаются к отопительному контуру
    3. Плоские. Больше всего они напоминают вышеупомянутую модель — черный ящик с прозрачной крышкой. На поверхность днища плотно крепится трубка с водой, получающей тепловую энергию от контакта с нагретым материалом

    Использовать солнечные коллекторы можно только в определенных условиях. Если стоит мороз, полезный эффект будет практически незаметен. Необходимо, чтобы температура воздуха было довольно высока, что делает использование солнечного обогрева доступным только в достаточно теплых регионах. Коллекторы используются только для обогрева помещений, поэтому их функционал и возможности заметно ниже.

    Преимущества солнечных установок

    • Основным преимуществом является неограниченно высокий ресурс источника — Солнца. На самом деле, поток энергии имеет определенные пределы, но на нынешнем этапе развития технологии достичь этого предела совершенно невозможно.
    • Вторым преимуществом является отсутствие стоимости энергии. Она просто есть, и ей можно и нужно пользоваться.
    • Кроме того, появление источника предсказуемо и может быть заранее рассчитано с точностью до секунд, что заметно отличает его от других альтернативных видов энергии.

    Проблемы использования солнечной энергии

    Применение солнечной энергии имеет и некоторые проблемы. Основными из них являются отсутствие Солнца в ночное время и возможность возникновения облачности, осадков и прочих неблагоприятных погодных условий. Есть и еще важная и существенная проблема — низкая эффективность оборудования, в сочетании с высокой ценой. Эта проблема считается разрешимой, многие ученые и инженеры постоянно работают над ее решением.

    Перспективы развития

    Энергия Солнца на Земле неиссякаема. Это дает основания прочить постоянное развитие и продвижение технологий получения и переработки солнечной энергии, появление более эффективной аппаратуры, увеличение доли солнечной энергии в общем потреблении человечества. Статистика показывает, что за последние 10 лет в этом направлении сделан гигантский скачок, поэтому будущее у гелиоэнергетики во всех смыслах слова блестящее.

  • Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: