Принципы радиосвязи, основные виды и области применения

Принципы радиосвязи, основные виды и области применения

Гипервысокие частоты (ГВЧ)

Но эти диапазоны (рис. 23) весьма обширны и, в свою очередь, разбиты на участки, куда входят так называемые радиовещательные и телевизионные диапазоны, диапазоны для наземной и авиационной, космической и морской связи, для передачи данных и медицины, для радиолокации и радионавигации и т.д. Каждой радиослужбе выделен свой участок диапазона или фиксированные частоты.

6.3. Как распространяются радиоволны

Радиоволны излучаются через антенну в пространство и распространяются в виде энергии ЭМП. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.
Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волны (выше частота). Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.
Передачи длинноволновых (ДВ) вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые (СВ) станции слышны в пределах тысячи километров. Что же касается коротких волн (КВ), то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном применялись волны от 1 до 30 км. Волны короче 100 метров вообще считались непригодными для дальней связи. На рис. 24 показано прохождение коротких и длинных радиоволн в атмосфере Земли.
Однако дальнейшие исследования коротких и ультракоротких волн (УКВ) показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.
Еще в 1902 английский математик Оливер Хевисайд и американский инженер-электрик Артур Эдвин Кеннелли практически одновременно предсказали, что над Землей существует ионизированный слой воздуха – естественное зеркало, отражающее электромагнитные волны. Этот слой был назван ионосферой. Ионосфера Земли должна была позволить увеличить дальность распространения радиоволн на расстояния, превышающие прямую видимость. Экспериментально это предположение было доказано в 1923 году. Радиочастотные импульсы передавались вертикально вверх, и принимались вернувшиеся сигналы. Измерения времени между посылкой и приемом импульсов позволили определить высоту и количество слоев отражения.

Отразившись от ионосферы, короткие волны возвращаются к Земле, оставив под собой сотни километров «мертвой зоны». Пропутешествовав к ионосфере и обратно, волна не «успокаивается», а отражается от поверхности Земли и вновь устремляется к ионосфере, где опять отражается и т. д. Так, многократно отражаясь, радиоволна может несколько раз обогнуть земной шар.
Установлено, что высота отражения зависит в первую очередь от длины волны. Чем короче волна, тем на большей высоте происходит ее отражение и, следовательно, больше «мертвая зона». Эта зависимость верна лишь для коротковолновой части спектра (примерно до 25–30 МГц). Для более коротких волн ионосфера прозрачна. Волны пронизывают ее насквозь и уходят в космическое пространство.
Из рис. 25 видно, что отражение зависит не только от частоты, но и от времени суток. Это связано с тем, что ионосфера ионизируется солнечным излучением и с наступлением темноты постепенно теряет свою отражательную способность. Степень ионизации также зависит от солнечной активности, которая меняется в течение года и из года в год по семилетнему циклу.

Радиоволны УКВ диапазона по свойствам в большей степени напоминают световые лучи. Они практически не отражаются от ионосферы, очень незначительно огибают земную поверхность и распространяются в пределах прямой видимости. Поэтому дальность действия ультракоротких волн невелика. Но в этом есть определенное преимущество для радиосвязи. Поскольку в диапазоне УКВ
волны распространяются в пределах прямой видимости, то можно располагать радиостанции на расстоянии 150–200 км друг от друга без взаимного влияния. А это позволяет многократно использовать одну и ту же частоту соседним станциям.
Свойства радиоволн диапазонов ДЦВ и 800 МГц еще более близки к световым лучам и потому обладают еще одним интересным и важным свойством. Вспомним, как устроен фонарик. Свет от лампочки, расположенной в фокусе рефлектора, собирается в узкий пучок лучей, который можно послать в любом направлении. Примерно то же самое можно проделать и с высокочастотными радиоволнами. Можно их собирать зеркалами-антеннами и посылать узкими пучками. Для низкочастотных волн такую антенну построить невозможно, так как слишком велики были бы ее размеры (диаметр зеркала должен быть намного больше, чем длина волны). Возможность направленного излучения волн позволяет повысить эффективность системы связи.
Связано это с тем, что узкий луч обеспечивает меньшее рассеивание энергии в побочных направлениях, что позволяет применять менее мощные передатчики для достижения заданной дальности связи. Направленное излучение создает меньше помех другим системам связи, находящихся не в створе луча.
При приеме радиоволн также могут использоваться достоинства направленного излучения. Например, многие знакомы с параболическими спутниковыми антеннами, фокусирующими излучение спутникового передатчика в точку, где установлен приемный датчик. Применение направленных приемных антенн в радиоастрономии позволило сделать множество фундаментальных научных открытий.
Необходимо отметить, что с уменьшением длины волны возрастает их затухание и поглощение в атмосфере. В частности, на распространение волн короче 1 см начинают влиять такие явления как туман, дождь, облака, которые могут стать серьезной помехой, сильно ограничивающей дальность связи.
Таким образом, мы выяснили, что волны радиодиапазона обладают различными свойствами распространения, и каждый участок этого диапазона применяется там, где лучше всего могут быть использованы его преимущества.

На рис. 26 показано распространение КВ и УКВ.

ССЫЛКИ:

Максвелл Джеймс Клерк(1831-1879), английский физик, создатель классической электродинамики, один из основоположников статистической физики.

Читайте также:
Опыты по физике для детей с объяснением

Я не буду здесь приводить физические формулы и законы.

Генрих Рудольф Герц (1857-1894)— немецкий физик. Окончил Берлинский университет. Основное достижение — экспериментальное подтверждение электромагнитной теории Джеймса Максвелла. Герц доказал существование электромагнитных волн. Он подробно исследовал отражение, интерференцию, дифракцию и поляризацию электромагнитных волн, доказал, что скорость их распространения совпадает со скоростью распространения света, и что свет представляет собой не что иное, как разновидность электромагнитных волн. Он построил электродинамику движущихся тел, исходя из гипотезы о том, что эфир увлекается движущимися телами. Однако его теория электродинамики не подтвердилась опытами и позднее уступила место электронной теории Хендрика Лоренца. Результаты, полученные Герцем, легли в основу развития радио.

См. мою статью «Простейший радиоприёмник».

В данном контексте – устройство, регистрирующее ЭМВ.

Подробнее об А.С. Попове – изобретателе радио – см. мои статьи «Полупроводниковый диод» и «Простейший радиоприёмник».

О приёмнике Попова см. там же.

ВЧ – высокая частота.

КВАНТ энергии следует понимать именно как ПОРЦИЮ энергии и никак иначе.

См. мою статью «Электронные лампы».

См. мою статью «Транзистор».

НЧ – низкая частота (подразумевается звуковая частота).

ДВС – двигатель внутреннего сгорания.

УНЧ – усилитель низкой частоты.

ГВЧ – генератор высокой частоты.

[16] ЭДС – электродвижущая сила.

УВЧ – усилитель высокой частоты.

Она равна скорости света с=300 000 км/с.

11 класс

§ 40. Принципы радиосвязи и телевидения

Изобретение радио.

Опыты Герца, описание которых появилось в 1888 г., заинтересовали физиков всего мира. Мысль о практическом использовании электромагнитных волн возникла сразу же у многих учёных. Однако из-за невысокой чувствительности приёмника Герца и неудобного способа наблюдения принимаемых сигналов осуществление приёма было возможно только на расстояниях 8—10 м от передатчика.

В России одним из первых занялся изучением передачи электромагнитных волн преподаватель офицерских минных курсов в Кронштадте Александр Степанович Попов (1859 — 1906).

Для того чтобы обеспечить автоматический приём электромагнитных волн, он использовал звонковое устройство для встряхивания когерера 1 после приёма сигнала.

1 Когерер представляет собой стеклянную трубку с двумя электродами, в которой находятся мелкие металлические опилки. В обычных условиях когерер обладает большим сопротивлением, так как опилки имеют плохой контакт друг с другом. Пришедшая электромагнитная волна создаёт в когерере переменный ток высокой частоты. Между опилками проскакивают мельчайшие искорки, которые «спекают» их. В результате сопротивление когерера резко падает.

Цепь электрического звонка замыкалась с помощью специального электромагнитного реле. Это реле было включено в цепь когерера и срабатывало в момент прихода электромагнитной волны. C окончанием приёма сигнала работа звонка сразу же прекращалась, так как молоточек звонка ударял не только по звонковой чашке, но и по когереру. C последним встряхиванием когерера электромагнитное реле отключало звонок, и аппарат был готов к приёму следующей волны. Схема приёмника Попова приведена на рисунке 6.50.

Для того чтобы увеличить чувствительность аппарата, Попов один из выводов когерера заземлил, а другой присоединил к высоко поднятому куску проволоки, создав тем самым приёмную антенну. Заземление превращает проводящую поверхность земли в часть открытого колебательного контура, что увеличивает дальность приёма.

7 мая 1895 г. на заседании Русского физико-химического общества Попов выступил с докладом «Об отношении металлических порошков к электрическим колебаниям» и продемонстрировал созданный им первый в мире радиоприёмник (рис. 6.51).

Этот день вошёл в историю мировой науки и техники как день рождения радио. 24 марта 1896 г. Попов с помощью сконструированных им передатчика и приёмника радиосигналов смог передать первую в мире радиограмму на расстояние в 250 м. Летом следующего года дальность беспроволочной связи была увеличена до 5 км.

Наряду с Поповым весьма схожее приёмное устройство в сочетании с искровым излучателем Герца применил итальянский изобретатель Гульельмо Маркони (1874—1937) в системе передачи на расстояние сигналов Морзе посредством электромагнитных волн. В устройствах, разработанных Маркони, были использованы антенны в виде высоко поднятого вертикального провода и заземления.

Особенно важным было включение длинной антенны в передатчик. 12 декабря 1901 г. Маркони осуществил одностороннюю радиосвязь через Атлантический океан, а в 1907 г. была открыта первая трансатлантическая служба беспроволочной связи.

Принципы радиосвязи.

Радиосвязь — это передача и приём информации посредством электромагнитных волн в широком диапазоне частот — от 3 ∙ 10 4 до 3 ∙ 10 11 Гц. Схема радиосвязи представлена на рисунке 6.52.

На передающей станции генератор высокочастотных колебаний возбуждает в антенне вынужденные колебания (рис. 6.52, а). Излучаемые передающей антенной электромагнитные волны распространяются во все стороны и достигают антенны приёмной станции (рис. 6.52, б). Под действием переменного электромагнитного поля волны электроны в приёмной антенне приходят в движение. В антенне возникает переменный ток высокой частоты. Приёмный контур выделяет из всех частот, возбуждённых в антенне, только колебания, частота которых равна собственной частоте контура.

При радиотелефонной связи колебания давления воздуха в звуковой волне преобразуются с помощью микрофона в электрические колебания той же формы. Казалось бы, достаточно усилить эти колебания, подать в антенну, и передача на расстояние речи и музыки с помощью электромагнитных волн будет осуществлена. Однако в действительности такой простой способ передачи неосуществим.

Частота звуковых колебаний мала, а электромагнитные волны низкой (звуковой) частоты имеют малую интенсивность. Поэтому для передачи используются высокочастотные колебания 2 , вырабатываемые генератором (рис. 6.53, а).

2 Можно показать, что интенсивность излучения электромагнитной волны прямо пропорциональна четвёртой степени её частоты. При увеличении частоты колебаний всего лишь в 2 раза излучаемая энергия возрастает в 16 раз. Поэтому при колебаниях низкой частоты излучения практически не происходит.

Колебания же низкой (звуковой) частоты (рис. 6.53, б) применяют лишь для изменения высокочастотных колебаний, или, как говорят, для их модуляции.

Модуляцией электромагнитной волны называют изменение её характеристик (амплитуды, частоты или фазы) при помощи колебаний с частотами, значительно меньшими частоты самой электромагнитной волны.

Читайте также:
Ток короткого замыкания - определение, методики расчёта, формула

Соответственно различают амплитудную (рис. 6.53, в), частотную (рис. 6.53, г) и фазовую (рис. 6.53, д) модуляции колебаний. Частота исходной (немодулированной) волны называется несущей частотой, а частота изменения характеристик волны при модуляции — частотой модуляции. В радиоприёмнике из модулированных колебаний высокой частоты после их усиления получают низкочастотные колебания. Такой процесс преобразования называется детектированием или демодуляцией. Полученный в результате детектирования низкочастотный сигнал соответствует тому звуковому сигналу, который действовал на микрофон передатчика. После усиления электрические колебания низкой частоты могут быть преобразованы в звуковые колебания или использованы для других целей. Блок-схема радиовещательного тракта приведена на рисунке 6.54.

Понятие о телевидении.

C помощью радиоволн можно осуществлять передачу не только звуковых сигналов, но и изображений.

Общая схема телевизионного вещания подобна схеме обычного радиовещания (см. рис. 6.54). Однако в телевизионном передатчике наряду с сигналом звукового сопровождения создаётся ещё видеосигнал (сигнал изображения) со своей несущей частотой. Колебания с этой несущей частотой модулируются сигналом изображения, поступающим от особых передающих электронно-лучевых трубок (иконоскопов, видиконов или суперотиконов). В модулированный видеосигнал входят также сигналы для синхронизации развёртки электронного луча в приёмной электроннолучевой трубке (кинескопе), на экране которой возникает изображение.

Телевизионная схема включает в себя следующие устройства:

1) Телевизионная передающая камера (предназначена для преобразования изображения, получаемого при помощи объектива на мишени передающей трубки или полупроводниковой матрице, в телевизионный видеосигнал).

2) Телекинопроектор (преобразует изображение и звук на киноплёнке в телевизионный сигнал и позволяет демонстрировать кинофильмы по телевидению).

3) Видеомагнитофон (записывает и в нужный момент воспроизводит видеосигнал, сформированный передающей камерой или телекинопроектором).

4) Видеомикшер (позволяет переключаться между несколькими источниками изображения: камерами, видеомагнитофонами и др.).

5) Передатчик (несущий сигнал высокой частоты модулируется телевизионным сигналом и передаётся по радио или проводам).

6) Приёмник — телевизор (с помощью синхроимпульсов, содержащихся в видеосигнале, телевизионное изображение воспроизводится на экран приёмника — кинескоп, ЖК-дисплей, плазменную панель).

В цветном телевидении применяют три видеосигнала, соответствующие трём основным цветам — красному, зелёному и синему. Для передачи изменяющихся изображений используют покадровый способ. Кадры представляют собой изображения, сменяющие друг друга с частотой 1/25 с. Физиологическая особенность нашего зрения состоит в том, что такая смена кадров воспринимается человеческим глазом как непрерывное движение.

Существуют различные системы передачи телевидения.

Наземное телевидение — система передачи телевизионного сигнала к потребителю при помощи телевизионных вышек и передатчиков, работающих в диапазоне частот 47 – 862 МГц. Для приёма сигнала используется внутрикомнатная или наружная антенна.

Спутниковое телевидение — система передачи телевизионного сигнала от передающего центра к потребителю, использующая в качестве ретранслятора искусственные спутники Земли, расположенные в космосе на геостационарной околоземной орбите над экватором и оснащённые приёмопередающим оборудованием. Спутниковое телевидение обеспечивает покрытие качественным телевизионным сигналом больших территорий, труднодоступных для ретрансляции обычным способом.

Аналоговое телевидение — телевизионная система, использующая для получения, вывода и передачи изображения и звука аналоговый электрический сигнал.

Цифровое телевидение — технология передачи телевизионного изображения и звука при помощи цифрового кодирования видеосигнала и звукового сигнала.

Вопросы:

1. Опишите схему приемника Попова, представленную на рисунке 6.50.

2. Какой вклад в развитие радиосвязи внесли Попов и Маркони?

3. Какие устройства входят в систему радиосвязи?

4. В чём заключается процесс:

б) детектирования электромагнитных волн?

5. Как осуществляется передача изображений с помощью радиоволн?

Вопросы для обсуждения:

1. Опишите схему радиовещательного тракта, показанную на рисунке 6.54.

2. Почему, когда автомобиль проезжает под эстакадой или мостом, радиоприёмник в нём плохо работает?

Упражнения:

1. Радиолокатор работает на волне длиной 15 см и испускает 4000 импульсов в 1 с. Длительность каждого импульса составляет 2 мкс. Сколько электромагнитных колебаний содержится в каждом импульсе? Определите глубину разведки локатора.

2. Радиолокатор посылает 5000 импульсов в секунду. Определите дальность действия, на которую рассчитан данный радиолокатор. Сколько электромагнитных колебаний содержится в каждом импульсе, если радиолокатор работает на длине волны 12 см, а продолжительность каждого импульса равна 2 • 10 -5 с?

3. Колебательный контур радиоприёмника настроен на частоту 12 МГц. Во сколько раз нужно изменить ёмкость конденсатора контура, чтобы настроиться на частоту, соответствующую длине волны 50 м?

10 простых экспериментов для детей, которые легко повторить дома

Мотивировать ребёнка изучать физику и химию в школе можно разными способами. Например, долго объяснять, что они пригодятся в будущем для поступления в вуз. Или просто показать ему несколько классных фокусов… ой, нет, опытов, которые наглядно демонстрируют, насколько интересной может быть наука. Обязательно попытайтесь повторить это дома!

1. Достать монетку из воды, не намочив рук

Положите монету в тарелку и налейте воды. Можете сказать ребёнку, что у вас получится достать её, не прикасаясь к воде. Поставьте свечку в центр тарелки и через какое-то время накройте её стаканом. Огонь быстро погаснет, а вода поднимется вверх по перевёрнутому сосуду, открыв монету.

Почему так происходит. Когда свечка погасла, разгорячённый воздух стал остывать и, соответственно, уменьшаться в объёме. Давление внутри стакана стало стремительно падать, и вода из тарелки заполнила пустующее место.

2. Положить тяжести на яичную скорлупу

Аккуратно разбейте куриное яйцо на две части или не спешите выбрасывать их после готовки. Они пригодятся для следующего опыта.

Скорлупа куриного яйца очень хрупкая. Положите на неё любой груз (например, книгу), она тут же сломается. Но поставьте четыре половинки скорлупы как ножки, накройте их пластиком, а затем опустите на него ту же книгу. Теперь скорлупа способна выдержать её вес. Вы можете даже положить на книгу дополнительный груз, чтобы увидеть, насколько прочна эта конструкция.

Почему так происходит. Дело в том, что прочность конструкции зависит не только от материала, но и от его формы. Куполообразная форма «арочнообразно» распределяет вес по скорлупе и повышает её грузоподъёмность в несколько раз.

Читайте также:
Электростатика — основные понятия и формулы раздела физики с примерами

3. Из дыр в бутылке не выливается вода

Налейте воду в пластиковую бутылку и закройте крышку. Булавкой проделайте в бутылке одну или несколько дырок. Конечно, из отверстий тут же польётся вода. Но спустя пару секунд остановится и не будет вытекать, пока вы вновь не откроете крышку.

Почему так происходит. Вода остаётся даже в бутылке с дырками благодаря поверхностному натяжению. В момент, когда вы открываете крышку, содержимое сосуда начинает сверху вытеснять атмосферное давление, силы натяжения не хватает, и вода выливается. Таким образом, зная физическую основу этого фокуса, вы можете с помощью крышки регулировать поток воды.

4. Жидкость течёт вверх

Налейте в один бокал воду, в другой — масло. Положите вырезанный кусок картона на бокал воды и переверните. Картон как будто приклеится к бокалу и не будет падать вниз. Бокал воды горлышко к горлышку положите на бокал с маслом. Затем аккуратно сдвиньте картон, создав небольшую щель между двумя сосудами. После этого масло «потечёт» вверх, а вода начнёт перемещаться в нижний бокал.

Почему так происходит. Масло легче воды, поэтому будет как будто течь наверх, пока полностью не вытеснит воду.

5. Вода мгновенно превращается в лёд

На полтора часа положите бутылку простой воды в морозилку горизонтально. Затем аккуратно достаньте её из холодильника, встряхните или резким движением поставьте на стол. Охлаждённая вода моментально превратится в лёд.

Почему так происходит. Сначала воде недоставало центра кристаллизации. Но после встряхивания кристаллы льда соединяются друг с другом, и вода мгновенно замерзает.

6. Мост из бумаги

Сложите из книг две небольшие башни. Положите два листа бумаги сверху, соединив их как мост. Этот мост ожидаемо окажется не очень крепким, любой груз продавит его вниз. Но бумажный мост может быть гораздо прочнее. Сложите те же листы гармошкой и вновь положите их между книгами. Теперь мост выдержит даже ещё одну книгу поверх.

Почему так происходит. Конструкция стала прочнее благодаря «ребру жёсткости» — технологии, которая применяется в реальном строительстве. Ширина опоры увеличилась, и поэтому возросла грузоподъёмность даже моста из бумаги.

7. Опыт с равновесием

Возьмите винную пробку. С двух сторон воткните в неё вилки. В торец пробки воткните зубочистку или иголку. Затем положите зубочистку на край стакана. Вся конструкция опирается на зубочистку и остаётся в равновесии.

Почему так происходит. Две вилки, зубочистка и пробка образуют твёрдое тело. Из-за сложной формы тела его центр масс находится ниже точки опоры, что позволяет сохранять равновесие.

8. Яйцо затягивает в бутылку

Возьмите очищенное и сваренное яйцо и попробуйте протолкнуть его внутрь бутылки. Скорее всего, у вас ничего не получится, яйцо не пройдёт через горлышко. Но есть другой способ. Смочите ватку спиртом, подожгите её и поместите внутрь бутылки. Теперь положите яйцо на горлышко бутылки, и оно само, без ваших усилий, упадёт в бутылку.

Почему так происходит. Часть воздуха в бутылке сгорела, внутри образовалось пониженное давление, и давление снаружи затолкнуло яйцо.

9. Бинт вместо крышки

Наполните стакан водой. Сверху накройте стакан марлей или бинтом и закрепите её резинкой. Затем переверните стакан. Часть воды останется в стакане и упрётся в марлю как в крышку.

Почему так происходит. Вода не проходит через обычную тряпку благодаря поверхностному натяжению. В промежутках ткани возникла водяная плёнка, и её сила удерживает содержимое стакана вместе с атмосферным давлением, которое действует на него снаружи.

10. Левитирующие шарики

Включите фен и поместите теннисный шарик в поток воздуха. После этого он повиснет на месте и не сдвинется, даже если повернуть фен и дуть на шарик под другим углом. При желании и достаточной ловкости в поток можно добавить ещё один шарик.

Почему так происходит. Давление внутри струи воздуха ниже давления снаружи. Разница давлений и создаёт силы, которые действуют со всех сторон и удерживают шарик.

Физика для дошкольников

Анаит
Физика для дошкольников

Занимательные и простые опыты для маленьких физиков

Откуда берутся настоящие ученые? Ведь кто-то совершает необыкновенные открытия, изобретает хитроумные приборы, которыми мы пользуемся. Некоторые даже получают мировое признание в виде престижных наград. Как утверждают педагоги, детство – начало пути к будущим открытиям и свершениям. Несмотря на простоту опытов, но поняв основные физические принципы и законы, дети ощущают себя всемогущими волшебниками. Это прекрасно, ведь живой интерес к науке – залог успешной учебы.

Детские способности не всегда раскрываются самостоятельно. Часто требуется предложить детворе определенную научную деятельность, лишь потом проявляются склонности к тем или иным знаниям. Простые опыты – легкий способ выяснить, интересуется ли ребенок естественными науками. Маленькие открыватели мира редко остаются равнодушными к «чудесным» действиям. Даже если желание изучать физику ярко не проявится, заложить азы физических знаний все же стоит.

Простейшие опыты, хороши тем, что даже стеснительные, сомневающиеся в себе дети с удовольствием занимаются экспериментами. Достижение ожидаемого результата рождает уверенность в собственных силах. Ровесники восторженно принимают демонстрацию подобных «фокусов», что улучшает отношения между ребятами.

О чем нужно подумать, прежде чем начать.

• Для начала нужно подготовить место для опытов, отвечающее всем требованиям техники безопасности. Ведь во время знакомства со свойствами льда и огня неосторожные движения ребенка и взрослого могут привести к пожару или повреждению электроприборов, которое часто случается при попадании воды внутрь устройства.

• Имейте в виду, что после того, как взрослый закончит демонстрацию того или иного опыта, у ребенка естественным образом появится желание сделать то же самое самостоятельно. Поэтому во время самой демонстрации обращайте внимание малыша на запах, цвет, форму и другие аспекты.

Читайте также:
Использование энергии солнца на Земле ℹ виды и источники солнечной энергии, преимущества, цифры, интересные факты, способы и перспективы применения

• Позволяйте детям помогать Вам в процессе подготовки реактивов, дайте им почувствовать то, что законы физики и химии понятны и просты, и даже «маленький Эйнштейн» может влиять на мир, используя знания во благо.

• Чтобы у ребенка возникла заинтересованность при проведении опыта, старайтесь не выкладывать все сразу, а создайте атмосферу таинственности. Такой подход поможет привлечь внимание детей и вызовет главный вопрос,который задают все ученые: «Почему это происходит?».

• Продумайте не только процесс демонстрации физического опыта, но и то, как Вы будете объяснить причину явления природы, при этом учитывайте возрастные особенности когнитивного развития данного возраста. Для дошкольника достаточно краткого и ясного ответа, который упростит понимание продемонстрированного явления.

• Если Вы верите в Бога, то проведение опыта поможет ребенку увидеть красоту и мудрость Божьего замысла при сотворении мира. Обратите внимание дошкольника на то, что все чудеса и волшебство в итоге объясняются научными законами, которые заложены Богом во все физические тела. Хотя сам по себе процесс открытия удивительных законов бытия – настоящее чудо творчества.

• Самое важное, что хочет узнать ребенок во время опыта, это причина, вызывающая то или иное изменение, происходящее с предметами при определенных условиях. Поэтому продумайте все «Потому» для того, чтобы удовлетворить потребность маленького почемучки. В этом Вам помогут наши небольшие подсказки.

Требования к постановке опытов

1. Абсолютно все эксперименты проводятся с участием взрослых. Конечно, многие исследования безопасны. Беда в том, что ребята не всегда проводят четкую границу между безобидными и опасными манипуляциями.

2. Необходимо быть особенно внимательными, если используются острые, колюще-режущие предметы, открытый огонь. Здесь присутствие старших обязательно.

3. Использование ядовитых веществ запрещено.

4. Ребенку нужно подробно описать порядок действий, которые следует произвести. Необходимо ясно сформулировать цель работы.

5. Взрослые должны объяснять суть опытов, принципы действия законов физики.

Важно! Желательно предусмотреть возможные детские вопросы, чтобы ответить на них максимально подробно. Неприятно, когда мама или папа предлагают провести опыт, смутно понимая, что он подтверждает. Поэтому лучше подготовиться, проштудировав нужную литературу

А теперь сами физические опыты для детей:

Очень зрелищной бывает для детей работа со светом и звуком. Педагоги утверждают, что занимательные опыты интересны ребятам разных возрастов. Например, предложенные здесь физические опыты подойдут и для дошкольников.

«Волшебная игла»

«Посмотри,у меня есть две иголки: одна простая, а другая – волшебная. Простая иголка может легко утонуть в этой чашке с водой, а вот волшебная – будет держаться на поверхности. Не веришь? Давайте проверим!

Берем небольшой кусочек тонкой бумаги и аккуратно выкладываем его на поверхность воды в нашей чашке. Возьмем иглу, посмотри, она должна быть совершенно сухой, чтобы с ней произошло это «волшебство». Аккуратно пинцетом кладем иголку на листочек бумаги и обнаруживаем, что она не тонет!

Конечно, ты скажешь, что секрет – в бумаге. Отчасти ты прав, бумага поддерживает иглу, как плот, и не дает ей утонуть. Но все на так просто, и чудеса продолжаются.

Берем наш пинцет и аккуратно погружаем в воду сначала края бумажного листка, затем и весь клочок. Посмотри, бумага утонула, а игла продолжает держаться на воде. Я же говорил тебе, что наша иголочка – необычная».

Объяснение «секрета»опыта: Игла сделана из стали, и поэтому должна тонуть в воде, как и другие предметы из металла. В нашем опыте иголка не тонет, потому что ее поддерживает сила поверхностного натяжения воды, которая помогает даже некоторым насекомым скользить по воде, таким как клопы-водомерки.

«Приключение ледяного кубика»

«Посмотри на этот кубик льда. Он образовался в морозильной камере из обычной воды, которую мы налили в специальный контейнер. А ты знаешь, что ледяной кубик может плавать по поверхности воды и даже умеет нырять. Давай посмотрим, как это у него получается.

Берем стеклянный стакан, наполняем его до половины чистой водой и опускаем льдинку. Видишь, она не тонет! А теперь мы сделаем так, что ледяной кусочек погрузится поглубже. Наливаем две столовые ложки растительного масла в стакан с водой, и что получается? Ледяной «пловец» не хочет всплывать! В чем же секрет волшебства? Ну-ка догадайся!»

Объяснение опыта: Причина кроется в том,что все вещества: лед, вода и масло – состоят из маленьких частичек, но у разных веществ эти частицы находятся на неодинаковом расстоянии. Чем ближе и плотнее они друг к другу, тем выше плотность вещества. У кубика льда плотность больше, чем у масла, но меньше, чем у воды, поэтому он и утонул в жирном масле, но всплыл на поверхности воды.

«Как растения поднимают воду вверх, к самым лепесткам?»

«Зачем ты поливаешь цветок прямо на лепестки, ведь он пьет воду только из земли. Видишь, в горшке видны маленькие корни – это такие трубочки, по которым вода идет вверх. Да, да! Вода не только может литься вниз, но и подниматься вверх. Давай проведем опыт, и ты поймешь, как все происходит.

Нам нужна плотная салфетка. Отрежь от нее не узкую полоску, примерно 3 см шириной. Теперь нарисуем на полоске деления, чтобы она стала похожа на линейку. Готово!

А теперь берем чашку с водой, капнем немного акварели и опустим в нее нижний конец полосы из салфетки. А второй кончик придерживаем рукой или закрепляем с помощью прищепки.

Будь внимателен, видишь, цветная вода стала подниматься вверх, и наша полоска из белой медленно превращается в цветную. Вот такие чудеса!»

Объяснение опыта с водой: салфетка, как и трубочки в корнях растений, содержат небольшие пустоты. В них и затекает вода, заполняя полости одну за другой. Благодаря такой пористой структуре обычная салфетка или капилляры корней помогают воде быстро подниматься вверх»

Читайте также:
Электролиз - понятие, уравнения и схемы процесса, примеры решений

Светящаяся «лава»

Этот опыт не создает настоящий светильник, но красиво имитирует работу лампы с движущимися частицами.

• соль или любая шипучая таблетка;

Банку нужно примерно на 2/3 наполнить окрашенной водой, затем почти до краев долить масла. Сверху следует посыпать немного соли. Затем отправиться в затемненную комнату, подсветить банку снизу фонариком. Крупинки соли станут опускаться на дно, увлекая за собой капельки жира. Позже, когда соль растворится, масло снова поднимется к поверхности.

Солнечный свет можно разложить на составляющие спектр разноцветные лучи.

• яркий естественный свет;

• высокая коробка или стул;

• большой лист белой бумаги.

В солнечный день перед окном, впускающим яркий свет, на пол нужно положить бумагу. Рядом установить коробку (стул, сверху поставить наполненный водой стакан. На полу появится радуга. Чтобы увидеть цвета полностью, достаточно подвигать бумагу и поймать ее. Прозрачная емкость с водой является призмой, раскладывающей луч на части спектра.

Звук распространяется с помощью волн. Звуковые волны в пространстве можно перенаправлять, усиливать.

• отрезок резиновой трубки (шланга);

В оба конца резиновой трубки нужно вставить воронку, закрепив ее пластилином. Теперь одну достаточно приставить к своему сердцу, а к другую – к уху. Ясно слышно биение сердца. Воронка «собирает» волны, внутренняя поверхность трубки не позволяет им рассеиваться в пространстве.

По этому принципу работает стетоскоп доктора. В старину примерно такое же устройство имели слуховые аппараты для слабослышащих людей.

Важно! Нельзя использовать источники громкого звука, так как это может повредить слуху.

В чем разница между экспериментом и опытом? Это методы исследования. Обычно опыт проводится с заранее известным результатом, демонстрируя уже понятную аксиому. Эксперимент же призван подтвердить или опровергнуть гипотезу.

Для детей разница между этими понятиями практически неощутима, любое действие производится впервые, без научной базы.

Однако часто проснувшийся интерес толкает ребят на новые эксперименты, вытекающие из уже известных свойств материалов. Такую самостоятельность нужно поощрять.

Материя меняет свойства с переменой температуры. Детей интересует изменение свойств всяческих жидкостей при обращении в лед. Различные вещества имеют отличную друг от друга температуру замерзания. Также при низкой температуре меняется их плотность.

Обратите внимание! Замораживая жидкости, следует применять только пластиковые контейнеры. Использовать стеклянные емкости нежелательно, так как они могут лопнуть. Причина в том, что жидкости, замерзая, меняют свою структуру. Молекулы образуют кристаллы, расстояние между ними увеличивается, увеличивается объем вещества.

• Если наполнить разные формочки водой и апельсиновым соком, оставить в морозильной камере, что получится? Вода уже замерзнет, а сок частично останется жидким. Причина – температура замерзания жидкости. Подобные эксперименты можно проводить с разными веществами.

• Налив в прозрачный контейнер воду и масло, можно увидеть уже привычное расслоение. Масло всплывает на поверхность воды, так как обладает меньшей плотностью. Что можно наблюдать при замораживании контейнера с содержимым? Вода и масло меняются местами. Сверху будет находиться лед, масло теперь окажется внизу. Замерзая, вода стала легче.

Работа с магнитом

Большой интерес у младших школьников вызывает проявление магнитных свойств различных веществ. Занимательная физика предлагает проверить эти свойства.

Варианты экспериментов (понадобятся магниты):

Проверка способности притягиваться различных предметов

Можно вести записи, указывая свойства материалов (пластик, дерево, железо, медь). Интересный материал – железная стружка, движение которой выглядит завораживающе.

Изучение способности магнита действовать сквозь другие материалы.

Например, металлический предмет подвергается воздействию магнита через стекло, картон, деревянную поверхность.

Рассмотрение способности магнитов притягиваться и отталкиваться.

Изучение магнитных полюсов (одноименные отталкиваются, разноименные притягиваются). Зрелищный вариант – прикрепление магнитов к плавающим игрушечным корабликам.

Намагниченная иголка – аналог компаса

В воде она указывает направление «север – юг». Намагниченная иголка притягивает другие мелкие предметы.

Каждое вещество обладает плотностью, влияющей на его вес. Разные показатели этого параметра имеют интересные проявления в виде многослойной жидкости. Даже дошкольники могут проводить такие простейшие опыты с жидкостями и наблюдать за их свойствами.

Для эксперимента понадобятся:

• несколько мелких предметов (например, монета, пластиковая бусина, кусочек пенопласта, булавка).

Банку нужно заполнить примерно на 1/3 сиропом, добавить такое же количество воды и масла. Жидкости не будут смешиваться, а образуют слои. Причина – плотность, вещество с меньшей плотностью легче. Затем поочередно в банку нужно опустить предметы. Они «зависнут» на разных уровнях. Все зависит от того, как соотносятся между собой плотности жидкостей и предметов. Если плотность материала меньше, чем жидкости, вещица не утонет.

Оба стакана нужно наполнить водой. В одном из них растворить 2 полные столовые ложки соли. Затем в стаканы следует опустить яйца. В обычной воде оно утонет, в соленой станет держаться на поверхности. Соль повышает плотность воды. Именно этим объясняется тот факт, что в морской воде плавать легче, чем в пресной.

Детям следует объяснить, что молекулы на поверхности жидкости притягиваются, образуя тончайшую упругую пленку. Такое свойство воды называется поверхностным натяжением. Этим объясняется, например, способность водомерки скользить по водной глади пруда.

Стакан до краев наполняется водой. Кажется, одной скрепки достаточно, чтобы жидкость пролилась. Необходимо осторожно погружать скрепки в стакан одну за другой. Опустив около десятка скрепок, можно увидеть, что вода не выливается, а образует на поверхности небольшой купол.

В миску следует налить воду, опустить спички. Они будут практически неподвижны на поверхности. Если капнуть в центр моющее средство, спички мгновенно расплывутся к краям миски. Мыло уменьшает поверхностное натяжение воды.

Прикреплённые файлы:
untitled_6hv29. | 27,26 Кб

Фотоотчет «ОБЖ для дошкольников» Формирование у детей дошкольников основ безопасности и жизнедеятельности в условиях ДОУ является наиболее актуальной и значимой проблемой.

Читайте также:
Закон преломления света ℹ формула и формулировка, физический смысл показателя преломления, принцип распространения лучей

Конспект урока в 9 классе «Физика и лирика. Физические явления в поэзии» Радость видеть и понимать является самым прекрасным подарком природы. А. Эйнштейн 1. О цветах мыльного пузырька писал в своих стихах С.

Музейные маршруты для дошкольников Русский историк В. О. Ключевский писал: «Чтобы знать, куда и как идти, надо знать, откуда и как мы пришли …» Эти слова могут помочь в мотивации.

Патриотическое воспитание дошкольников 9 мая – Праздник победы советского народа в Великой отечественной войне 1941-1945 годов. Этот день мы отмечаем как великий праздник – день.

Учим физику с ребенком сами, чтобы всем было интересно

Эта статья будет полезна тем родителям, которые отважились помогать ребенку с физикой. Сегодня узнаем, как правильно пояснять физику на примере таких тем, как инертность, масса, вес и сила тяжести. Бонусом — сделаю обзор нескольких полезных интернет-ресурсов которыми часто пользуюсь сам.

Первым делом определимся, какие могут быть трудности, если существует тонны учебников, видеоуроков, а также видео с опытами? Попробую раскрыть эту проблему.

Учебники

Хороших и качественных в плане методического содержания учебников предостаточно. Разве что плохо освещена тема применения физики в современных технологиях, о чем будет написано далее. Учебники — не лучшие самоучители, поскольку их предполагается использовать в тандеме с учителем (лекционной частью, учебными демонстрациями и практической работой). Если привычных занятий нет, то ученикам, особенно 7-9 классов будет очень тяжело усваивать материал. Вот посмотрите на это определение инертности:

Много ли стало понятно после прочтения? Семикласснику тем более тяжело освоить это свойство.

Лучше используйте учебник как справочник, или как план уроков, но не оставляйте его единственным источником информации. Можете спокойно продолжать пользоваться тем учебником, который применялся на уроках ранее, но учителем теперь должны стать вы, причем не обычным, а ЛУЧШИМ УЧИТЕЛЕМ, таким, чтоб не стыдно было посмотреть на себя в зеркало! Теперь перед вами стоит задача разобраться в содержимом этой книги объяснить ее и дополнить всем в чем нуждается ваш ребенок. Разберемся, что можно и нужно использовать как дополнение.

Видео опытов

Мне кажется, что нет нужды доказывать важность экспериментов. Они обязательно должны дополнять урок. Я стараюсь показывать эксперименты хотя бы каждые пол часа занятия. Они снимают напряжение, являются подтверждением излагаемой темы, помогают в ней разобраться, а также возвращают внимание ученика, если тот начал отвлекаться. Хочу обратить внимание, что в этом разделе идет речь о видео с экспериментами, но еще лучше иногда проводить и реальные опыты, о чем будет в следующем разделе.

Есть хорошая и плохая новость одновременно:

  • Не только множество студий снимают учебные ролики, но и учителя освоили интернет и ведут свои видеоблоги. Так что у вас не будет проблем с наличием материала, но будут реальные сложности по его отбору, с чем постараюсь помочь.

Хочу сразу заметить, что видеоматериалы отличаются не только качеством, но и преследуют разные цели от учебной демонстрации до научной популяризации.

Учебные демонстрации от НИЯУ «МИФИ»

Большинство лучших учебных демонстраций, которые я показываю своим ученикам сняты телестудией НИЯУ «МИФИ» с участием Гервидс Валериан Ивановича. Он оказался замечательным лектором, с невероятно чистой и грамотной речью. Хотя видео и предназначено для студентов, подача максимально проста и большинство роликов школьникам будет понятно.

Итог: материалы очень качественный, но имеет строгую подачу.

GetAClass — Физика в опытах и экспериментах

Этот новый канал имеет еще не много роликов, но постоянно развивается. Авторам канала удалось прощупать золотую середину между учебной и популяризационной составляющей. Практически ничего не знаю об авторах, если вам что-то известно о них — поделитесь в комментариях.

Итог: видео детям смотреть полезно и интересно, но самого материала пока еще мало.

Простая наука

Канал хорошо известен аудитории Хабра, его создатель Денис Мохов Bredun провел основательную работу и качественно заснял все известные мне популярные “ВАУ” эксперименты. Это пример чисто популяризационного материала, цель которого не столько научить, сколько заинтересовать.

Итог: видео качественное, показывать больше не как учебное, а для закрепления материала, когда ребенок уже разобрался в теме.

Галилео

Эксперименты проводит известный шоумен Александр Пушной, у него яркая подача, которая очень нравится школьникам. При этом сама речь бывает настолько безграмотна (с точки зрения физики), что уши сворачиваются трубочкой. Вот к примеру разбор ролика с подводной лодкой. Первое время я каждый раз останавливал видео и объяснял ученикам ошибки, но сейчас просто выключаю звук и рассказываю сам. Такой компромисс позволяет существенно экономить время и вполне устраивает детей.

Итог: яркие эксперименты с безграмотной речью требующей коррекции, не показывайте если не уверены в своих знаниях темы.

Худшее учебное видео — Физика для самых маленьких от Саакаянца

Иногда родители допускают ошибку и включают это видео детям, даже некоторые учителя физики умудряются показать это в 7-ом классе. О видео даже был написан отдельный пост, повторяться не будем.

Итог: никогда и никому не показывать. НИКОГДА!

Следите за обновлениями статьи, вероятно, что список будет пополняться вашими рекомендациями и тем что я еще вспомню.

Будь креативным

Учебные видео — это хорошо, но физика окружает нас везде вспомните, где вы сталкивались с тем что изучаете, найдите и покажите ребенку. К примеру, для пояснения, что такое инерция я демонстрирую фрагмент с человеком пауком из начала поста и говорю:

“Поезд очень массивен, чтобы его остановить, необходимо длительно прикладывать большую силу. В этом и заключается инертность что чтобы изменить скорость тела необходимо прикладывать силу некоторое время.”
После видео и пояснения определение явления инерции уже не выглядит таким страшным.

Теперь почва готова, чтобы поговорит о массе, как мере инертности тела, рассказать, что такое вес и сила тяжести. Можно попрыгать с ребенком и пояснить что когда он находится в воздухе, его масса и сила тяжести сохраняется, а вес равен 0 Н. Папе хорошо признаться что он весит 800 Н, а не 80 кг, а также достать пакет муки с кухни и показать, что в “кг” пишут массу, а не вес.

Читайте также:
Удельное электрическое сопротивление - определение, формула

Эти темы удобно закрепить видео, как астронавты бегали и падали на Луне:

Нужно пояснить, что космонавтам было очень непривычно, ведь масса (инертность) остались прежними, а вот сила тяжести уменьшилась в 6 раз. А также в контексте невесомости при обычной силе тяжести будет хорошо показать это шикарный ролик OK GO:

И не забудьте показать видео, как он снимался.

Подытоживая, замечу что реальные примеры и фрагменты фильмов могут возыметь огромный эффект, заинтересовать и помочь ребенку разобраться в теме. Но это возможно только при вашем непосредственном участии и поддержке.

Так как же искать хорошие опыты и фрагменты?

Хотя я и перечислил некоторые полезные ресурсы — для неподготовленного родителя это будет непростой задачей. Постараюсь максимально вам помочь в первое время. Оставляйте изучаемые темы в комментариях, а я буду стараться оперативно выкладывать рекомендуемые ролики с пояснениями.

Видео уроки и курсы. Почему не они?

Очевидно, что разрозненные видеоуроки с разных ресурсов и от разных авторов будут восприниматься учеником так, как если бы на каждый урок по одному и тому же предмету приходил новый учитель, которому было бы совсем не интересно что рассказывал предыдущий. Поэтому сразу целесообразно говорить о полном готовом курсе. А с курсами не все так хорошо:

  1. Мне не попадались завершенные качественные бесплатные курсы по школьной физике. Если вы знаете, где их найти — прошу поделиться.
  2. Большинство курсов платные, их качество заранее неизвестно. Знаете качественные — делитесь.
  3. Курсы будут вести ребенка по своей собственной программе без оглядки на его знания, способности, интересы и потребности. Скорее всего они пойдут в разрез со многим из перечисленного, или даже со всем.
  4. Если у ребенка есть пробел в какой-то теме вы бы могли помочь ему за 15 минут, разобравшись и ответив на вопросы, а курсы просто оставят его с этим пробелом и в дальнейшем только усугубят отставание.

Добавлено 17.04.20 в 22:22
Спасибо SpeleoAstronom, что напомнил о замечательных видеоуроках Павла Андреевича. На его канал подписан давно, могу оставить только положительные отзывы, если все же решили попробовать формат видеоуроков рекомендую его канал на YouTube.

Давайте интересные и необычные задачи

Скажу только, что этот сайт создал более 10 лет назад и он мне очень помогал все это время.

Проведите реальный эксперимент. Всем знакома поговорка: “Лучше один раз увидеть, чем сто раз услышать”, но мало кто знает ее продолжение: “И один раз прикоснуться чем 100 раз посмотреть”. Так вот с физикой именно так. Проведите с ребенком хотя бы один опыт. Только не лабораторную по тетрадке для лабораторных работ (тогда ребенок возненавидит физику), а реальные эксперимент.

Если не знаете с чего начать — рекомендую статью: Простые опыты с ребенком дома. Найдете кучу идей.

Занимательные опыты по физике

Разделы: Физика

Без сомнения, все наше знание начинается с опытов.
(Кант Эммануил. Немецкий философ 1724-1804г.г)

Физические опыты в занимательной форме знакомят учащихся с разнообразными применениями законов физики. Опыты можно использовать на уроках для привлечения внимания учащихся к изучаемому явлению, при повторении и закреплении учебного материала, на физических вечерах. Занимательные опыты углубляют и расширяют знания учащихся, способствуют развитию логического мышления, прививают интерес к предмету.

В данной работе описано 10 занимательных опытов, 5 демонстрационных экспериментов с использованием школьного оборудования. Авторами работ являются учащиеся 10 класса МОУ СОШ № 1 п. Забайкальск, Забайкальского края – Чугуевский Артём, Лаврентьев Аркадий, Чипизубов Дмитрий. Ребята самостоятельно проделали данные опыты, обобщили результаты и представили их в виде данной работы

Роль эксперимента в науке физике

О том, что физика наука молодая
Сказать определённо, здесь нельзя
И в древности науку познавая,
Стремились постигать её всегда.

Цель обучения физики конкретна,
Уметь на практике все знания применять.
И важно помнить – роль эксперимента
Должна на первом месте устоять.

Уметь планировать эксперимент и выполнять.
Анализировать и к жизни приобщать.
Строить модель, гипотезу выдвинуть,
Новых вершин стремиться достигнуть

Законы физики основаны на фактах, установленных опытным путем. Причем нередко истолкование одних и тех же фактов меняется в ходе исторического развития физики. Факты накапливаются в результате наблюдений. Но при этом только ими ограничиваться нельзя. Это только первый шаг к познанию. Дальше идет эксперимент, выработка понятий, допускающих качественные характеристики. Чтобы из наблюдений сделать общие выводы, выяснить причины явлений, надо установить количественные зависимости между величинами. Если такая зависимость получается, то найден физический закон. Если найден физический закон, то нет необходимости ставить в каждом отдельном случае опыт, достаточно выполнить соответствующие вычисления. Изучив экспериментально количественные связи между величинами, можно выявить закономерности. На основе этих закономерностей развивается общая теория явлений.

Следовательно, без эксперимента не может быть рационального обучения физике. Изучение физики предполагает широкое использование эксперимента, обсуждение особенностей его постановки и наблюдаемых результатов.

Занимательные опыты по физике

Описание опытов проводилось с использованием следующего алгоритма:

  1. Название опыта
  2. Необходимые для опыта приборы и материалы
  3. Этапы проведения опыта
  4. Объяснение опыта

Опыт № 1 Четыре этажа

Приборы и материалы: бокал, бумага, ножницы, вода, соль, красное вино, подсолнечное масло, крашенный спирт.

Этапы проведения опыта

Попробуем налить в стакан четыре разных жидкости так, чтобы они не смешались и стояли одна над другой в пять этажей. Впрочем, нам удобнее будет взять не стакан, а узкий, расширяющийся к верху бокал.

  1. Налить на дно бокала солёной подкрашенной воды.
  2. Свернуть из бумаги “Фунтик” и загнуть его конец под прямым углом; кончик его отрезать. Отверстие в “Фунтике” должно быть величиной с булавочную головку. Налить в этот рожок красного вина; тонкая струйка должна вытекать из него горизонтально, разбиваться о стенки бокала и по нему стекать на солёную воду.
    Когда слой красного вина по высоте сравняется с высотой слоя подкрашенной воды, прекратить лить вино.
  3. Из второго рожка налей таким же образом в бокал подсолнечного масла.
  4. Из третьего рожка налить слой крашенного спирта.
Читайте также:
Удельная теплота парообразования 💨 обозначение и единицы измерения, основные формулы, физический смысл, предназначение и способы применения в науке, таблица значений

Вот и получилось у нас четыре этажа жидкостей в одном бокале. Все разного цвета и разной плотности.

Жидкости в бакалее расположились в следующем порядке: подкрашенная вода, красное вино, подсолнечное масло, подкрашенный спирт. Самые тяжёлые – внизу, самые лёгкие – вверху. Самая большая плотность у солёной воды , самая маленькая у подкрашенного спирта .

Опыт № 2 Удивительный подсвечник

Приборы и материалы: свеча, гвоздь, стакан, спички, вода.

Этапы проведения опыта

Не правда ли, удивительный подсвечник – стакан воды? А этот подсвечник совсем не плох.

  1. Утяжелить конец свечи гвоздём.
  2. Рассчитать величину гвоздя так, чтобы свеча вся погрузилась в воду, только фитиль и самый кончик парафина должны выступать над водой.
  3. Зажечь фитиль.

– Позволь, – скажут тебе, – ведь через минуту свеча догорит до воды и погаснет!

– В том-то и дело, – ответишь ты, – что свеча с каждой минутой короче. А раз короче, значит и легче. Раз легче, значит, она всплывёт.

И, правда, свеча будет понемножку всплывать, причём охлаждённый водой парафин у края свечи будет таять медленней, чем парафин, окружающий фитиль. Поэтому вокруг фитиля образуется довольно глубокая воронка. Эта пустота, в свою очередь, облегчает свечу, потому-то наша свеча и догорит до конца.

Опыт № 3 Свеча за бутылкой

Приборы и материалы: свеча, бутылка, спички

Этапы проведения опыта

  1. Поставить зажженную свечу позади бутылки, а самому стань так, чтобы лицо отстояло от бутылки на 20-30 см.
  2. Стоит теперь дунуть, и свеча погаснет, будто между тобой и свечёй нет никакой преграды.

Свеча гаснет потому, что бутылка воздухом “Обтекается”: струя воздуха разбивается бутылкой на два потока; один обтекает её справа, а другой – слева; а встречаются они примерно там, где стоит пламя свечи.

Опыт № 4 Вертящаяся змейка

Приборы и материалы: плотная бумага, свеча, ножницы.

Этапы проведения опыта

  1. Из плотной бумаги вырезать спираль, растянуть её немного и посадить на конец изогнутой проволоки.
  2. Держать эту спираль над свечкой в восходящем потоке воздуха, змейка будет вращаться.

Змейка вращается, т.к. происходит расширение воздуха под действием тепла и о превращении теплой энергии в движение.

Опыт № 5 Извержение Везувия

Приборы и материалы: стеклянный сосуд, пузырёк, пробку, спиртовая тушь, вода.

Этапы проведения опыта

  1. В широкий стеклянный сосуд, наполненный водой, поставить пузырёк спиртовой туши.
  2. В пробке пузырька должно быть небольшое отверстие.

Вода имеет большую плотность, чем спирт; она постепенно будет входить в пузырёк, вытесняя оттуда тушь. Красная, синяя или черная жидкость тоненькой струйкой будет подниматься из пузырька кверху.

Опыт № 6 Пятнадцать спичек на одной

Приборы и материалы: 15 спичек.

Этапы проведения опыта

  1. Положить одну спичку на стол, а на неё поперёк 14 спичек так, чтобы головки их торчали кверху, а концы касались стола.
  2. Как поднять первую спичку, держа её за один конец, и вместе с нею все остальные спички?

Для этого нужно только поверх всех спичек, в ложбинку между ними, положить ещё одну, пятнадцатую спичку

Опыт № 7 Подставка для кастрюли

Приборы и материалы: тарелка, 3 вилки, кольцо для салфетки, кастрюля.

Этапы проведения опыта

  1. Поставить три вилки в кольцо.
  2. Поставить на данную конструкцию тарелку.
  3. На подставку поставить кастрюлю с водой.

Данный опыт объясняется правилом рычага и устойчивым равновесием.

Опыт № 8 Парафиновый мотор

Приборы и материалы: свеча, спица, 2 стакана, 2 тарелки, спички.

Этапы проведения опыта

Чтобы сделать это мотор, нам не нужно ни электричества, ни бензина. Нам нужно для этого только… свеча.

  1. Раскалить спицу и воткнуть её их головками в свечку. Это будет ось нашего двигателя.
  2. Положить свечу спицей на края двух стаканов и уравновесить.
  3. Зажечь свечу с обоих концов.

Капля парафина упадёт в одну из тарелок, подставленных под концы свечи. Равновесие нарушится, другой конец свечи перетянет и опустится; при этом с него стечёт несколько капель парафина, и он станет легче первого конца; он поднимается к верху, первый конец опустится, уронит каплю, станет легче, и наш мотор начнёт работать вовсю; постепенно колебания свечи будут увеличиваться всё больше и больше.

Опыт №9 Свободный обмен жидкостями

Приборы и материалы: апельсин, бокал, красное вино или молоко, воду, 2 зубочистки.

Этапы проведения опыта

  1. Осторожно разрезать апельсин пополам, очистить так, чтобы кожица снялась целой чашечкой.
  2. Проткнуть в дне этой чашечки два отверстия рядом и положить её в бокал. Диаметр чашечки должен быть немного больше диаметра центральной части бокала, тогда чашечка удержится на стенках, не падая на дно.
  3. Опустить апельсинную чашечку в сосуд на одну треть высоты.
  4. Налить в апельсинную корку красного вина или подкрашенного спирта. Оно будет проходить через дырку, пока уровень вина не дойдёт до дна чашечки.
  5. Затем налить воды почти до края. Можно увидеть, как струя вина поднимается через одно из отверстий до уровня воды, между тем как вода, более тяжёлая, пройдет через другое отверстие и станет опускаться ко дну бокала. Через несколько мгновений вино очутится на верху, а вода внизу.

Опыт №10 Певучая рюмка

Приборы и материалы: тонкая рюмка, вода.

Читайте также:
Парообразование 💧 описание процессов испарения и кипения, свойства, виды превращений жидкости, условия образования пара, формулы, примеры

Этапы проведения опыта

  1. Наполнить рюмку водой и вытереть края рюмки.
  2. Смоченным пальцем потереть в любом месте рюмки, она запоёт.

1. Диффузия жидкостей и газов

Диффузия (от лат. diflusio – распространение, растекание, рассеивание), перенос частиц разной природы, обусловленный хаотическим тепловым движением молекул (атомов). Различают диффузию в жидкостях, газах и твёрдых телах

Демонстрационный эксперимент «Наблюдение диффузии»

Приборы и материалы: вата, нашатырный спирт, фенолфталеин, установка для наблюдения диффузии.

Этапы проведения эксперимента

  1. Возьмём два кусочка ватки.
  2. Смочим один кусочек ватки фенолфталеином, другой – нашатырным спиртом.
  3. Приведём ветки в соприкосновение.
  4. Наблюдается окрашивание ваток в розовый цвет вследствие явления диффузии.

Явление диффузии можно пронаблюдать при помощи специальной установки

  1. Нальём в одну из колбочек нашатырный спирт.
  2. Смочим кусочек ваты фенолфталеином и положим сверху в колбочку.
  3. Через некоторое время наблюдаем окрашивание ватки. Данный эксперимент демонстрирует явление диффузии на расстоянии.

Докажем что явление диффузии зависит от температуры. Чем выше температура, тем быстрее протекает диффузия.

Для демонстрации данного опыта возьмём два одинаовых стакана. В один стакан нальём холодной воды, в другой – горячей. Добавим в стаканы медный купорос, наблюдаем, что в горячей воде медный купорос растворяется быстрее, что доказывает зависимость диффузии от температуры.

2. Сообщающиеся сосуды

Для демонстрации сообщающихся сосудов возьмем ряд сосудов различной формы, соединенных в нижней части трубками.

Будем наливать жидкость в один из них: мы сейчас же обнаружим, что жидкость перетечет по трубкам в остальные сосуды и установится во всех сосудах на одном уровне.

Объяснение этого опыта заключается в следующем. Давление на свободных поверхностях жидкости в сосудах одно и то же; оно равно атмосферному давлению. Таким образом, все свободные поверхности принадлежат одной и той же поверхности уровня и, следовательно, должны находиться в одной горизонтали плои верхняя кромка самого сосуда: иначе чайник нельзя будет налить доверху.

Шар Паскаля – это прибор предназначен для демонстрации равномерной передачи давления, производимого на жидкость или газ в закрытом сосуде, а также подъёма жидкости за поршнем под влиянием атмосферного давления.

Для демонстрации равномерной передачи давления, производимого на жидкости в закрытом сосуде, необходимо, используя поршень, набрать в сосуд воды и плотно насадить на патрубок шар. Вдвигая поршень в сосуд, продемонстрировать истечение жидкости из отверстий в шаре, обратив внимание на равномерное истечение жидкости по всем направлениям.

Занимательные и простые опыты для маленьких физиков

Откуда берутся настоящие ученые? Ведь кто-то совершает необыкновенные открытия, изобретает хитроумные приборы, которыми мы пользуемся. Некоторые даже получают мировое признание в виде престижных наград. Как утверждают педагоги, детство – начало пути к будущим открытиям и свершениям.

Нужна ли физика младшим школьникам

Большинство школьных программ предполагает изучение физики с пятого класса. Однако родители хорошо знают, какое множество вопросов возникает у любознательных ребят младшего школьного возраста и даже у дошколят. Открыть дорогу к чудесному миру знаний помогут опыты по физике. Для школьников 7-10 лет они, конечно, будут несложными. Несмотря на простоту опытов, но поняв основные физические принципы и законы, дети ощущают себя всемогущими волшебниками. Это прекрасно, ведь живой интерес к науке – залог успешной учебы.

Детские способности не всегда раскрываются самостоятельно. Часто требуется предложить детворе определенную научную деятельность, лишь потом проявляются склонности к тем или иным знаниям. Домашние опыты – легкий способ выяснить, интересуется ли чадо естественными науками. Маленькие открыватели мира редко остаются равнодушными к «чудесным» действиям. Даже если желание изучать физику ярко не проявится, заложить азы физических знаний все же стоит.

Простейшие опыты, проводимые дома, хороши тем, что даже стеснительные, сомневающиеся в себе дети с удовольствием занимаются домашними экспериментами. Достижение ожидаемого результата рождает уверенность в собственных силах. Ровесники восторженно принимают демонстрацию подобных «фокусов», что улучшает отношения между ребятами.

Требования к постановке опытов дома

Чтобы изучение законов физики в домашних условиях было безопасным, необходимо соблюдать меры предосторожности:

  1. Абсолютно все эксперименты проводятся с участием взрослых. Конечно, многие исследования безопасны. Беда в том, что ребята не всегда проводят четкую границу между безобидными и опасными манипуляциями.
  2. Необходимо быть особенно внимательными, если используются острые, колюще-режущие предметы, открытый огонь. Здесь присутствие старших обязательно.
  3. Использование ядовитых веществ запрещено.
  4. Ребенку нужно подробно описать порядок действий, которые следует произвести. Необходимо ясно сформулировать цель работы.
  5. Взрослые должны объяснять суть опытов, принципы действия законов физики.

Простейшие исследования

Начать знакомство с физикой можно, демонстрируя свойства веществ. Это должны быть самые простые опыты для детей.

Важно! Желательно предусмотреть возможные детские вопросы, чтобы ответить на них максимально подробно. Неприятно, когда мама или папа предлагают провести опыт, смутно понимая, что он подтверждает. Поэтому лучше подготовиться, проштудировав нужную литературу.

Разная плотность

Каждое вещество обладает плотностью, влияющей на его вес. Разные показатели этого параметра имеют интересные проявления в виде многослойной жидкости.

Даже дошкольники могут проводить такие простейшие опыты с жидкостями и наблюдать за их свойствами.
Для эксперимента понадобятся:

  • сахарный сироп;
  • растительное масло;
  • вода;
  • стеклянная банка;
  • несколько мелких предметов (например, монета, пластиковая бусина, кусочек пенопласта, булавка).

Банку нужно заполнить примерно на 1/3 сиропом, добавить такое же количество воды и масла. Жидкости не будут смешиваться, а образуют слои. Причина – плотность, вещество с меньшей плотностью легче. Затем поочередно в банку нужно опустить предметы. Они «зависнут» на разных уровнях. Все зависит от того, как соотносятся между собой плотности жидкостей и предметов. Если плотность материала меньше, чем жидкости, вещица не утонет.

Плавающее яйцо

  • 2 стакана;
  • столовая ложка;
  • соль;
  • вода;
  • 2 яйца.

Оба стакана нужно наполнить водой. В одном из них растворить 2 полные столовые ложки соли. Затем в стаканы следует опустить яйца. В обычной воде оно утонет, в соленой станет держаться на поверхности. Соль повышает плотность воды. Именно этим объясняется тот факт, что в морской воде плавать легче, чем в пресной.

Читайте также:
Электростатика — основные понятия и формулы раздела физики с примерами

Поверхностное натяжение воды

Детям следует объяснить, что молекулы на поверхности жидкости притягиваются, образуя тончайшую упругую пленку. Такое свойство воды называется поверхностным натяжением. Этим объясняется, например, способность водомерки скользить по водной глади пруда.

Непроливающаяся вода
  • стеклянный стакан;
  • вода;
  • канцелярские скрепки.

Стакан до краев наполняется водой. Кажется, одной скрепки достаточно, чтобы жидкость пролилась. Необходимо осторожно погружать скрепки в стакан одну за другой. Опустив около десятка скрепок, можно увидеть, что вода не выливается, а образует на поверхности небольшой купол.

Плавающие спички
  • миска;
  • вода;
  • 4 спички;
  • жидкое мыло.

В миску следует налить воду, опустить спички. Они будут практически неподвижны на поверхности. Если капнуть в центр моющее средство, спички мгновенно расплывутся к краям миски. Мыло уменьшает поверхностное натяжение воды.

Занимательные опыты

Очень зрелищной бывает для детей работа со светом и звуком. Педагоги утверждают, что занимательные опыты интересны ребятам разных возрастов. Например, предложенные здесь физические опыты подойдут и для дошкольников.

Светящаяся «лава»

Этот опыт не создает настоящий светильник, но красиво имитирует работу лампы с движущимися частицами.
Необходимо:

  • стеклянная банка;
  • вода;
  • растительное масло;
  • соль или любая шипучая таблетка;
  • пищевой краситель;
  • фонарик.

Банку нужно примерно на 2/3 наполнить окрашенной водой, затем почти до краев долить масла. Сверху следует посыпать немного соли. Затем отправиться в затемненную комнату, подсветить банку снизу фонариком. Крупинки соли станут опускаться на дно, увлекая за собой капельки жира. Позже, когда соль растворится, масло снова поднимется к поверхности.

Домашняя радуга

Солнечный свет можно разложить на составляющие спектр разноцветные лучи.

  • яркий естественный свет;
  • стакан;
  • вода;
  • высокая коробка или стул;
  • большой лист белой бумаги.

В солнечный день перед окном, впускающим яркий свет, на пол нужно положить бумагу. Рядом установить коробку (стул), сверху поставить наполненный водой стакан. На полу появится радуга. Чтобы увидеть цвета полностью, достаточно подвигать бумагу и поймать ее. Прозрачная емкость с водой является призмой, раскладывающей луч на части спектра.

Стетоскоп доктора

Звук распространяется с помощью волн. Звуковые волны в пространстве можно перенаправлять, усиливать.
Понадобятся:

  • отрезок резиновой трубки (шланга);
  • 2 воронки;
  • пластилин.

В оба конца резиновой трубки нужно вставить воронку, закрепив ее пластилином. Теперь одну достаточно приставить к своему сердцу, а к другую – к уху. Ясно слышно биение сердца. Воронка «собирает» волны, внутренняя поверхность трубки не позволяет им рассеиваться в пространстве.

По этому принципу работает стетоскоп доктора. В старину примерно такое же устройство имели слуховые аппараты для слабослышащих людей.

Важно! Нельзя использовать источники громкого звука, так как это может повредить слуху.

Эксперименты

В чем разница между экспериментом и опытом? Это методы исследования. Обычно опыт проводится с заранее известным результатом, демонстрируя уже понятную аксиому. Эксперимент же призван подтвердить или опровергнуть гипотезу.

Для детей разница между этими понятиями практически неощутима, любое действие производится впервые, без научной базы.

Однако часто проснувшийся интерес толкает ребят на новые эксперименты, вытекающие из уже известных свойств материалов. Такую самостоятельность нужно поощрять.

Замораживание жидкостей

Материя меняет свойства с переменой температуры. Детей интересует изменение свойств всяческих жидкостей при обращении в лед. Различные вещества имеют отличную друг от друга температуру замерзания. Также при низкой температуре меняется их плотность.

Обратите внимание! Замораживая жидкости, следует применять только пластиковые контейнеры. Использовать стеклянные емкости нежелательно, так как они могут лопнуть. Причина в том, что жидкости, замерзая, меняют свою структуру. Молекулы образуют кристаллы, расстояние между ними увеличивается, увеличивается объем вещества.

  • Если наполнить разные формочки водой и апельсиновым соком, оставить в морозильной камере, что получится? Вода уже замерзнет, а сок частично останется жидким. Причина – температура замерзания жидкости. Подобные эксперименты можно проводить с разными веществами.
  • Налив в прозрачный контейнер воду и масло, можно увидеть уже привычное расслоение. Масло всплывает на поверхность воды, так как обладает меньшей плотностью. Что можно наблюдать при замораживании контейнера с содержимым? Вода и масло меняются местами. Сверху будет находиться лед, масло теперь окажется внизу. Замерзая, вода стала легче.

Работа с магнитом

Большой интерес у младших школьников вызывает проявление магнитных свойств различных веществ. Занимательная физика предлагает проверить эти свойства.

Варианты экспериментов (понадобятся магниты):

Проверка способности притягиваться различных предметов

Можно вести записи, указывая свойства материалов (пластик, дерево, железо, медь). Интересный материал – железная стружка, движение которой выглядит завораживающе.

Изучение способности магнита действовать сквозь другие материалы.

Например, металлический предмет подвергается воздействию магнита через стекло, картон, деревянную поверхность.

Рассмотрение способности магнитов притягиваться и отталкиваться.

Изучение магнитных полюсов (одноименные отталкиваются, разноименные притягиваются). Зрелищный вариант – прикрепление магнитов к плавающим игрушечным корабликам.

Намагниченная иголка – аналог компаса

В воде она указывает направление «север – юг». Намагниченная иголка притягивает другие мелкие предметы.

Советы родителям

  1. Желательно не перегружать маленького исследователя информацией. Цель опытов – показать работу законов физики. Лучше подробно рассмотреть одно явление, чем ради зрелищности бесконечно менять направления.
  2. Перед каждым опытом доступно объяснить свойства и особенности предметов, участвующих в них. Затем вместе с ребенком подвести итог.
  3. Особенного внимания заслуживают правила безопасности. Начало каждого занятия сопровождается инструкциями.

Научные опыты – увлекательное дело! Возможно, оно окажется таковым и для родителей. Вместе открывать новые стороны обычных явлений интересно вдвойне. Стоит отбросить повседневные заботы, разделив детскую радость открытий.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: