Фосфор – валентность, степень окисления, характеристика и строение

Фосфор – валентность, степень окисления, характеристика и строение

Последнее обновление

4 апреля 2020г.

Валентность –

– это способность атома образовывать определенное количество связей с другими атомами.

Правила определения валентности

1. В молекулах простых веществ: H2, F2, Cl2, Br2, I2 равна единице.

2. В молекулах простых веществ: O2, S8 равна двум.

3. В молекулах простых веществ: N2, P4 и CO – оксиде углерода (II) – равна трем.

4. В молекулах простых веществ, которые образует углерод (алмаз, графит), а также в органических соединениях, которые он образует, валентность углерода равна четырем.

5. В составе сложных веществ водород одновалентен, кислород, в основном, двухвалентен. Для определения валентности атомов других элементов в составе сложных веществ надо знать строение этих веществ.

Степень окисления

– это условный заряд атомов химического элемента в соединении, вычисленный на основе предположения, что все соединения (с ионной и ковалентной полярной связью) состоят только из ионов.

Высшая степень окисления элемента равна номеру группы.

фтор высшая степень окисления ноль в простом веществе F2 0

кислород высшая степень окисления +2 во фториде кислорода О +2 F2

Низшая степень окисления элемента равна восемь минус номер группы (по числу электронов, которые атом элемента может принять до завершенного восьми электронного уровня)

Правила определения степени окисления (далее обозначим: ст.ок.)

Общее правило: Сумма всех степеней окисления элементов в молекуле с учетом количества атомов равна нулю (Молекула электронейтральна.) , в ионе – равна заряду иона.

I. Степень окисления простых веществ равна нулю: Са 0 , O2 0 , Cl2 0

II. ст.ок. в бинарных c оединениях:

Менее электроотрицательный элемент ставится на первое место. ( Исключения: С -4 Н4 + метан и N -3 H 3 + аммиак)

Нужно помнить, что

– ст.ок. металла всегда положительна

– ст.ок. металлов I , II , III групп главных подгрупп постоянна и равна номеру группы

Для остальных ст.ок. вычисляется по общему правилу.

Более электроотрицательный элемент ставится на второе место, его ст.ок. равна восемь минус номер группы (по числу электронов, которые он принимает до завершенного восьми электронного уровня).

Исключения: пероксиды, например, Н2 +1 О2 -1 , Ba +2 O 2 -1 и др. ; карбиды металлов I и II групп Ag 2 +1 C 2 -1 , Ca +2 C 2 -1 и др. (В школьном курсе встречается соединение FeS2 – пирит. Это дисульфид железа. Степень окисления серы в нем (-1) Fe +2 S2 -1 ). Это происходит потому, что в этих соединениях есть связи между одинаковыми атомами -О-О-, – S – S- , тройная связь в карбидах между атомами углерода. Степень окисления и валентность элементов в этих соединениях не совпадают: у углерода валентность IV , у кислорода и серы II .

III. Степень окисления в основаниях Ме + n (ОН) n равна количеству гидроксогрупп .

1. в гидроксогруппе ст.ок. кислорода -2, водорода +1, заряд гидроксогруппы 1-

2. ст.ок. металла равна количеству гидроксогрупп

IV. Степень окисления в кислотах:

1. ст.ок. водорода +1, кислорода -2

2. ст.ок. центрального атома вычисляется по общему правилу путем решения простого уравнения

х = +5 (не забудьте знак +)

Можно запомнить , что у кислот с высшей ст.ок. центрального элемента, соответствующего номеру группы, название будет заканчиваться на –ная:

Н N О3 азотная Н N +5 О3

НС l О4 хлорная Н Cl +7 О4

Н Mn О4 марганцовая Н Mn +7 О4

Останется запомнить:

Н N О2 азотистая Н N +3 О2

НС l О3 хлорноватая Н Cl +5 О3

НС l О2 хлористая Н Cl +3 О2

НС l О хлорноватистая Н Cl +1 О

V. Степень окисления в солях

у центрального атома такая же, как в кислотном остатке. Достаточно помнить или определить ст.ок. элемента в кислоте.

VI. Степень окисления элемента в сложном ионе равна заряду иона.

Например, NH 4 + Cl – : записываем ион N х Н4 +1

Наприме р, определить ст.ок. элементов в гексацианоферрате( III ) калия К3[ Fe ( CN )6]

– у калия +1 : К3 +1 [ Fe ( CN )6], отсюда заряд иона [ Fe ( CN )6] 3-

– у железа +3 (указано в названии) [ Fe +3 ( CN )6] 3- , отсюда ( CN )6 6-

– у одной группы ( CN ) –

– более электроотрицательный азот: у него -3, отсюда ( C х N -3 ) –

ст.ок. углерода +2

VII. Степень окисления углерода в органических соединениях разнообразна и вычисляется, исходя из учета того, что ст.ок. водорода равна +1, кислорода -2

ст.ок. углерода -2 (при этом валентность углерода равна IV)

Задание. Определить степень окисления и валентность фосфора в фосфорноватистой кислоте H3PO2.

Читайте также:
Фосфат кальция - формула, свойства, вред и его польза

Вычислим степень окисления фосфора.

Обозначим её за х. Подставим степень окисления водорода +1, а кислорода -2, умножив на соответствующее количество атомов: (+1) ∙ 3 + х + (-2) ∙ 2 = 0, отсюда х = +1.

1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов.

Электроотрицательность

Электроотрицательность — способность атома какого-либо химического элемента в соединении оттягивать на себя электроны связанных с ним атомов других химических элементов.

Электроотрицательность, как и прочие свойства атомов химических элементов, изменяется с увеличением порядкового номера элемента периодически:

График выше демонстрирует периодичность изменения электроотрицательности элементов главных подгрупп в зависимости от порядкового номера элемента.

При движении вниз по подгруппе таблицы Менделеева электроотрицательность химических элементов уменьшается, при движении вправо по периоду возрастает.

Электроотрицательность отражает неметалличность элементов: чем выше значение электроотрицательности, тем более у элемента выражены неметаллические свойства.

Степень окисления

Степень окисления – условный заряд атома химического элемента в соединении, рассчитанный исходя из предположения, что все связи в его молекуле ионные, т.е. все связывающие электронные пары смещены к атомам с большей электроотрицательностью.

Как рассчитать степень окисления элемента в соединении?

1) Степень окисления химических элементов в простых веществах всегда равна нулю.

2) Существуют элементы, проявляющие в сложных веществах постоянную степень окисления:

Элементы, проявляющие постоянную СО
Значение постоянной СО этого элемента

3) Существуют химические элементы, которые проявляют в подавляющем большинстве соединений постоянную степень окисления. К таким элементам относятся:

Элемент
Степень окисления практически во всех соединениях
Исключения

4) Алгебраическая сумма степеней окисления всех атомов в молекуле всегда равна нулю. Алгебраическая сумма степеней окисления всех атомов в ионе равна заряду иона.

5) Высшая (максимальная) степень окисления равна номеру группы. Исключения, которые не попадают под это правило, — элементы побочной подгруппы I группы, элементы побочной подгруппы VIII группы, а также кислород и фтор.

Химические элементы, номер группы которых не совпадает с их высшей степенью окисления (обязательные к запоминанию)

Химический элемент
Номер группы
Высшая степень окисления

6) Низшая степень окисления металлов всегда равна нулю, а низшая степень окисления неметаллов рассчитывается по формуле:

низшая степень окисления неметалла = №группы − 8

Отталкиваясь от представленных выше правил, можно установить степень окисления химического элемента в любом веществе.

Нахождение степеней окисления элементов в различных соединениях

Пример 1

Определите степени окисления всех элементов в серной кислоте.

Решение:

Запишем формулу серной кислоты:

Степень окисления водорода во всех сложных веществах +1 (кроме гидридов металлов).

Степень окисления кислорода во всех сложных веществах равна -2 (кроме пероксидов и фторида кислорода OF2). Расставим известные степени окисления:

Обозначим степень окисления серы как x:

Молекула серной кислоты, как и молекула любого вещества, в целом электронейтральна, т.к. сумма степеней окисления всех атомов в молекуле равна нулю. Схематически это можно изобразить следующим образом:

Т.е. мы получили следующее уравнение:

Таким образом, степень окисления серы в серной кислоте равна +6.

Пример 2

Определите степень окисления всех элементов в дихромате аммония.

Решение:

Запишем формулу дихромата аммония:

Как и в предыдущем случае, мы можем расставить степени окисления водорода и кислорода:

Однако мы видим, что неизвестны степени окисления сразу у двух химических элементов — азота и хрома. Поэтому найти степени окисления аналогично предыдущему примеру мы не можем (одно уравнение с двумя переменными не имеет единственного решения).

Обратим внимание на то, что указанное вещество относится к классу солей и, соответственно, имеет ионное строение. Тогда справедливо можно сказать, что в состав дихромата аммония входят катионы NH4 + (заряд данного катиона можно посмотреть в таблице растворимости). Следовательно, так как в формульной единице дихромата аммония два положительных однозарядных катиона NH4 + , заряд дихромат-иона равен -2, поскольку вещество в целом электронейтрально. Т.е. вещество образовано катионами NH4 + и анионами Cr2O7 2- .

Мы знаем степени окисления водорода и кислорода. Зная, что сумма степеней окисления атомов всех элементов в ионе равна заряду, и обозначив степени окисления азота и хрома как x и y соответственно, мы можем записать:

Т.е. мы получаем два независимых уравнения:

Решая которые, находим x и y:

Таким образом, в дихромате аммония степени окисления азота -3, водорода +1, хрома +6, а кислорода -2.

Как определять степени окисления элементов в органических веществах можно почитать здесь.

Валентность

Валентность атомов обозначается римскими цифрами: I, II, III и т.д.

Валентные возможности атома зависят от количества:

1) неспаренных электронов

Читайте также:
Кислород ℹ формула, строение элемента, химические и физические свойства, способы получения и применения, с какими соединениями реагирует

2) неподеленных электронных пар на орбиталях валентных уровней

3) пустых электронных орбиталей валентного уровня

Валентные возможности атома водорода

Изобразим электронно-графическую формулу атома водорода:

Было сказано, что на валентные возможности могут влиять три фактора — наличие неспаренных электронов, наличие неподеленных электронных пар на внешнем уровне, а также наличие вакантных (пустых) орбиталей внешнего уровня. Мы видим на внешнем (и единственном) энергетическом уровне один неспаренный электрон. Исходя из этого, водород может точно иметь валентность, равную I. Однако на первом энергетическом уровне есть только один подуровень — s, т.е. атом водорода на внешнем уровне не имеет как неподеленных электронных пар, так и пустых орбиталей.

Таким образом, единственная валентность, которую может проявлять атом водорода, равна I.

Валентные возможности атома углерода

Рассмотрим электронное строение атома углерода. В основном состоянии электронная конфигурация его внешнего уровня выглядит следующим образом:

Т.е. в основном состоянии на внешнем энергетическом уровне невозбужденного атома углерода находится 2 неспаренных электрона. В таком состоянии он может проявлять валентность, равную II. Однако атом углерода очень легко переходит в возбужденное состояние при сообщении ему энергии, и электронная конфигурация внешнего слоя в этом случае принимает вид:

Несмотря на то что на процесс возбуждения атома углерода тратится некоторое количество энергии, траты с избытком компенсируются при образовании четырех ковалентных связей. По этой причине валентность IV намного более характерна для атома углерода. Так, например, валентность IV углерод имеет в молекулах углекислого газа, угольной кислоты и абсолютно всех органических веществ.

Помимо неспаренных электронов и неподеленных электронных пар на валентные возможности также влияет наличие вакантных ( ) орбиталей валентного уровня. Наличие таких орбиталей на заполняемом уровне приводит к тому, что атом может выполнять роль акцептора электронной пары, т.е. образовывать дополнительные ковалентные связи по донорно-акцепторному механизму. Так, например, вопреки ожиданиям, в молекуле угарного газа CO связь не двойная, а тройная, что наглядно показано на следующей иллюстрации:

Резюмируя информацию по валентным возможностям атома углерода:

1) Для углерода возможны валентности II, III, IV

2) Наиболее распространенная валентность углерода в соединениях IV

3) В молекуле угарного газа CO связь тройная (!), при этом одна из трех связей образована по донорно-акцепторному механизму

Валентные возможности атома азота

Запишем электронно-графическую формулу внешнего энергетического уровня атома азота:

Как видно из иллюстрации выше, атом азота в своем обычном состоянии имеет 3 неспаренных электрона, в связи с чем логично предположить о его способности проявлять валентность, равную III. Действительно, валентность, равная трём, наблюдается в молекулах аммиака (NH3), азотистой кислоты (HNO2), треххлористого азота (NCl3) и т.д.

Выше было сказано, что валентность атома химического элемента зависит не только от количества неспаренных электронов, но также и от наличия неподеленных электронных пар. Связано это с тем, что ковалентная химическая связь может образоваться не только, когда два атома предоставляют друг другу по одному электрону, но также и тогда, когда один атом, имеющий неподеленную пару электронов — донор( ) предоставляет ее другому атому с вакантной ( ) орбиталью валентного уровня (акцептору). Т.е. для атома азота возможна также валентность IV за счет дополнительной ковалентной связи, образованной по донорно-акцепторному механизму. Так, например, четыре ковалентных связи, одна из которых образована по донорно-акцепторному механизму, наблюдается при образовании катиона аммония:

Несмотря на то что одна из ковалентных связей образуется по донорно-акцепторному механизму, все связи N-H в катионе аммония абсолютно идентичны и ничем друг от друга не отличаются.

Валентность, равную V, атом азота проявлять не способен. Связано это с тем, что для атома азота невозможен переход в возбужденное состояние, при котором происходит распаривание двух электронов с переходом одного из них на свободную орбиталь, наиболее близкую по уровню энергии. Атом азота не имеет d-подуровня, а переход на 3s-орбиталь энергетически настолько затратен, что затраты энергии не покрываются образованием новых связей. Многие могут задаться вопросом, а какая же тогда валентность у азота, например, в молекулах азотной кислоты HNO3 или оксида азота N2O5? Как ни странно, валентность там тоже IV, что видно из нижеследующих структурных формул:

Пунктирной линией на иллюстрации изображена так называемая делокализованная π -связь. По этой причине концевые связи NO можно назвать «полуторными». Аналогичные полуторные связи имеются также в молекуле озона O3, бензола C6H6 и т.д.

em>Резюмируя информацию по валентным возможностям атома азота:

Читайте также:
Соляная кислота: описание вещества, интересные факты

1) Для азота возможны валентности I, II, III и IV

2) Валентности V у азота не бывает!

3) В молекулах азотной кислоты и оксида азота N2O5 азот имеет валентность IV, а степень окисления +5 (!).

4) В соединениях, в которых атом азота четырехвалентен, одна из ковалентных связей образована по донорно-акцепторному механизму (соли аммония NH4 + , азотная кислота и д.р).

Валентные возможности фосфора

Изобразим электронно-графическую формулу внешнего энергетического уровня атома фосфора:

Как мы видим, строение внешнего слоя у атома фосфора в основном состоянии и атома азота одинаково, в связи с чем логично ожидать для атома фосфора так же, как и для атома азота, возможных валентностей, равных I, II, III и IV, что и наблюдается на практике.

Однако в отличие от азота, атом фосфора имеет на внешнем энергетическом уровне еще и d-подуровень с 5-ю вакантными орбиталями.

В связи с этим он способен переходить в возбужденное состояние, распаривая электроны 3 s -орбитали:

Таким образом, недоступная для азота валентность V для атома фосфора возможна. Так, например, валентность, равную пяти, атом фосфора имеет в молекулах таких соединений, как фосфорная кислота, галогениды фосфора (V), оксид фосфора (V) и т.д.

Валентные возможности атома кислорода

Электронно-графическая формула внешнего энергетического уровня атома кислорода имеет вид:

Мы видим на 2-м уровне два неспаренных электрона, в связи с чем для кислорода возможна валентность II. Следует отметить, что данная валентность атома кислорода наблюдается практически во всех соединениях. Выше при рассмотрении валентных возможностей атома углерода мы обсудили образование молекулы угарного газа. Связь в молекуле CO тройная, следовательно, кислород там трехвалентен (кислород — донор электронной пары).

Из-за того что атом кислорода не имеет на внешнем уровне d-подуровня, распаривание электронов s и p-орбиталей невозможно, из-за чего валентные возможности атома кислорода ограничены по сравнению с другими элементами его подгруппы, например, серой.

Таким образом, кислород практически всегда имеет валентность, равную II, однако в некоторых частицах он трехвалентен, в частности, в молекуле угарного газа C≡O. В случае, когда кислород имеет валентность III, одна из ковалентных связей образована по донорно-акцепторному механизму.

Валентные возможности атома серы

Внешний энергетический уровень атома серы в невозбужденном состоянии:

У атома серы, как и у атома кислорода, в обычном состоянии два неспаренных электрона, поэтому мы можем сделать вывод о том, что для серы возможна валентность, равная двум. И действительно, валентность II сера имеет, например, в молекуле сероводорода H2S.

Как мы видим, у атома серы на внешнем уровне появляется d-подуровень с вакантными орбиталями. По этой причине атом серы способен расширять свои валентные возможности в отличие от кислорода за счет перехода в возбужденные состояния. Так, при распаривании неподеленной электронной пары 3p-подуровня атом серы приобретает электронную конфигурацию внешнего уровня следующего вида:

В таком состоянии атом серы имеет 4 неспаренных электрона, что говорит нам о возможности проявления атомами серы валентности, равной IV. Действительно, валентность IV сера имеет в молекулах SO2, SF4, SOCl2 и т.д.

При распаривании второй неподеленной электронной пары, расположенной на 3s-подуровне, внешний энергетический уровень приобретает конфигурацию:

В таком состоянии уже становится возможным проявление валентности VI. Примером соединений с VI-валентной серой являются SO3, H2SO4, SO2Cl2 и т.д.

Аналогично можно рассмотреть валентные возможности остальных химических элементов.

Аморфные вещества в природе, технике, быту

Содержание:

Предмет: Химия
Тип работы: Реферат
Язык: Русский
Дата добавления: 02.11.2019
  • Данный тип работы не является научным трудом, не является готовой работой!
  • Данный тип работы представляет собой готовый результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала для самостоятельной подготовки учебной работы.

Если вам тяжело разобраться в данной теме напишите мне в whatsapp разберём вашу тему, согласуем сроки и я вам помогу!

По этой ссылке вы сможете найти рефераты по химии на любые темы и посмотреть как они написаны:

Посмотрите похожие темы возможно они вам могут быть полезны:

Введение:

Вы когда-нибудь задумывались о том, что представляют собой загадочные аморфные вещества? По строению они отличаются и от твердых, и от жидких. Дело в том, что такие тела находятся в особом конденсированном состоянии, имеющем только ближний порядок. Примеры аморфных веществ – смола, стекло, янтарь, каучук, полиэтилен, поливинилхлорид (наши любимые пластиковые окна), различные полимеры и другие. Это твердые тела, у которых нет кристаллической решетки. Еще к ним можно отнести сургуч, различные клеи, эбонит и пластмассы.

Читайте также:
Бензол - свойства вещества, формула, характеристика, состав

Аморфные и кристаллические вещества

Жесткие тела могут существовать в двух принципиально разных состояниях, которые различаются по своей внутренней структуре и, соответственно, по своим свойствам. Это кристаллическое и аморфное состояние твердого тела с монокристаллом или просто кристаллом. В других случаях в организме много мелких кристаллов, которые фантастически слиты воедино, например, кусочек рафинированного сахара. Такие тела называются поликристаллическими.

Наличие естественных граней в монокристаллах приводит к выраженному различию физических свойств тела в разных направлениях. Это может относиться к механической прочности, тепловой и электрической проводимости, упругости и т. д. Но не все свойства всегда зависят от направления – кубический медный кристалл имеет одинаковую электропроводность во всех направлениях, но имеет разные эластичности.

В поликристаллах принято говорить о средних значениях физических величин, поскольку вдоль любого выбранного направления будут отдельные кристаллы, произвольно ориентированные внутри тела.

Второй тип твердого состояния твердого тела представляет собой аморфное состояние. В этом состоянии невозможно обнаружить даже небольшие области, в которых наблюдается зависимость физических свойств от направления. Некоторые вещества могут находиться в любом из этих двух состояний.

Например, если кристаллический кварц плавится (температура плавления около 1700 ° C), то при охлаждении он образует плавленый кварц с другими физическими свойствами, которые идентичны во всех направлениях. Аморфное состояние – это неустойчивое состояние твердого тела. Оставленные наедине со своими устройствами, они, как правило, со временем переходят в кристаллическую форму, хотя этот процесс может занять годы или даже десятилетия.

Необыкновенные свойства аморфных веществ

Во время расщепления лица не образуются в аморфных телах. Частицы абсолютно случайны и находятся на близком расстоянии друг от друга. Они могут быть очень толстыми или вязкими. Как на них влияют внешние воздействия? Под воздействием различных температур тела становятся текучими, как жидкости, и в то же время довольно эластичными. В том случае, когда внешнее воздействие не длится долго, вещества аморфной структуры могут мощно разрушаться. Долгосрочное влияние извне приводит к тому, что они просто текут.

Попробуйте небольшой эксперимент со смолой в домашних условиях. Положите его на твердую поверхность, и вы заметите, что он начинает плавно течь. Это верно, это аморфное вещество! Скорость зависит от температуры. Если оно очень высокое, смола начнет распространяться намного быстрее.

Что еще характерно для таких органов? Они могут принимать любую форму. Если аморфные вещества в форме мелких частиц помещают в сосуд, например, в кувшин, то они также примут форму сосуда. Они также изотропны, то есть проявляют одинаковые физические свойства во всех направлениях.

Аморфное состояние вещества не подразумевает поддержания какой-либо конкретной температуры. По низким ставкам тела замерзают; на высоких уровнях они тают. Кстати, степень вязкости таких веществ также зависит от этого. Низкая температура способствует снижению вязкости, высокая, наоборот, увеличивает ее.

Для веществ аморфного типа можно выделить еще одну особенность – переход в кристаллическое состояние, причем спонтанное. Почему это происходит? Внутренняя энергия в кристаллическом теле намного меньше, чем в аморфном. Мы можем заметить это на примере изделий из стекла – со временем стекло становится мутным.

Металлическое стекло – что это? Металл может быть удален из кристаллической решетки во время плавления, то есть сделать вещество аморфной структуры стеклообразным. Во время затвердевания путем искусственного охлаждения кристаллическая решетка снова формируется. Аморфный металл обладает просто удивительной устойчивостью к коррозии. Например, кузов автомобиля, изготовленный из него, не будет нуждаться в различных покрытиях, поскольку он не будет подвергаться самопроизвольному разрушению. Аморфное вещество – это тело, чья атомная структура обладает беспрецедентной прочностью, что означает, что аморфный металл может быть использован абсолютно в любой промышленной промышленности.

Характеристики веществ

Важны атомные связи, а также тип кристаллической структуры. Кристаллы ионного типа характеризуются ионными связями, что означает плавный переход от одного атома к другому. В этом случае образуются положительно и отрицательно заряженные частицы. Мы можем наблюдать ионную связь на простом примере – такие характеристики присущи различным оксидам и солям. Другой особенностью ионных кристаллов является низкая теплопроводность, но ее производительность может заметно возрастать с нагревом. В узлах кристаллической решетки можно заметить различные молекулы, которые отличаются сильными атомными связями.

Многие минералы, которые мы находим повсюду в природе, имеют кристаллическую структуру. И аморфное состояние материи также является чистой природой. Только в этом случае тело является чем-то бесформенным, но кристаллы могут принимать форму красивых многогранников с плоскими гранями, а также формировать новые твердые тела удивительной красоты и чистоты.

Читайте также:
Пероксид водорода - формула, свойства, способы получения

Форма таких тел постоянна для конкретного соединения. Например, берилл всегда выглядит как шестиугольная призма. Сделай небольшой эксперимент. Возьмите небольшой кристалл кубической поваренной соли (миску) и поместите его в специальный раствор, максимально насыщенный той же поваренной солью. Со временем вы заметите, что это тело осталось неизменным – оно снова приняло форму куба или шара, которому присущи кристаллы хлорида натрия.

Аморфно-кристаллические вещества представляют собой тела, которые могут содержать как аморфную, так и кристаллическую фазы. Что влияет на свойства материалов такой структуры? В основном разные соотношения громкости и разные места по отношению друг к другу. Типичными примерами таких веществ являются материалы из керамики, фарфора, керамики. Из таблицы свойств материалов с аморфно-кристаллической структурой становится известно, что фарфор содержит максимальный процент стеклянной фазы. Показатели колеблются от 40-60 процентов. Мы увидим самое низкое содержание на примере каменного литья – менее 5 процентов. В то же время керамическая плитка будет иметь более высокое поглощение воды.

Аморфные вещества в быту, технике

Использование аморфных веществ наиболее активно осуществляется в области медицины. Например, быстро охлажденный металл активно используется в хирургии. Благодаря событиям, связанным с этим, многие люди получили возможность самостоятельно передвигаться после тяжелых травм. Дело в том, что вещество аморфной структуры является отличным биоматериалом для имплантации в кости. Полученные специальные винты, пластины, штифты, штифты вставляются в случае серьезных переломов. Ранее в хирургии для таких целей использовались сталь и титан. Только позже было замечено, что аморфные вещества очень медленно разлагаются в организме, и это удивительное свойство позволяет восстановить костную ткань. Впоследствии вещество заменяется костью.

Точная механика основана именно на точности, и поэтому ее так и называют. Особенно важную роль в этой отрасли, а также в метрологии играют ультраточные индикаторы измерительных приборов, которые могут быть достигнуты при использовании аморфных тел в приборах. Благодаря точным измерениям в институтах в области механики и физики проводятся лабораторные и научные исследования, получены новые лекарства и улучшены научные знания.

Другим примером использования аморфных веществ являются полимеры. Они могут медленно переходить из твердого состояния в жидкость, в то время как кристаллические полимеры характеризуются температурой плавления, а не температуры размягчения. Каково физическое состояние аморфных полимеров? Если вы обеспечите эти вещества низкой температурой, вы заметите, что они будут в стеклообразном состоянии и будут проявлять свойства твердых веществ. Постепенный нагрев помогает полимерам начать переходить в состояние повышенной упругости.

Аморфные вещества, примеры которых мы только что привели, интенсивно используются в промышленности. Сверхупругое состояние позволяет полимерам деформироваться так, как им нравится, но это состояние достигается благодаря повышенной гибкости звеньев и молекул. Дальнейшее повышение температуры приводит к тому, что полимер приобретает еще более упругие свойства. Он начинает переходить в особое жидкое и вязкое состояние.

Если вы оставите ситуацию без контроля и не предотвратите дальнейшее повышение температуры, полимер подвергнется разрушению, то есть разрушению. Вязкое состояние указывает на то, что все макромолекулярные единицы очень подвижны. Когда молекула полимера течет, единицы не только распрямляются, но и очень близко подходят друг к другу. Межмолекулярное воздействие превращает полимер в твердое вещество (каучук). Такой процесс называется механическим стеклованием. Полученное вещество используется для производства пленок и волокон.

На основе полимеров, полиамидов могут быть получены полиакрилонитрилы. Чтобы сделать полимерную пленку, нужно протолкнуть полимеры через фильеры, которые имеют щелевидное отверстие, и нанести на ленту. Таким образом, изготавливаются упаковочные материалы и ленточные основы. Полимеры также включают различные лаки (образующие пену в органическом растворителе), клеи и другие связующие материалы, композиты (полимерная основа с наполнителем) и пластмассы.

Аморфные вещества прочно укоренились в нашей жизни. Они используются везде.

Различные основы для изготовления лаков, клея, пластмассовых изделий (фенолформальдегидные смолы).

Эластомеры или синтетические каучуки.

Электроизоляционный материал – поливинилхлорид, или всем известные пластиковые окна из ПВХ. Он устойчив к пожарам, так как считается трудногорючим, обладает повышенной механической прочностью и электроизоляционными свойствами.

Полиамид – вещество с очень высокой прочностью, износостойкостью. Характеризуется высокими диэлектрическими характеристиками.

Оргстекло или полиметилметакрилат. Мы можем использовать его в области электротехники или в качестве материала для конструкций.

Читайте также:
Анилин (фениламин, аминобензол) - формула , способы получения

Фторопласт, или политетрафторэтилен, является известным диэлектриком, который не проявляет растворяющих свойств в растворителях органического происхождения. Широкий температурный диапазон и хорошие диэлектрические свойства позволяют использовать его в качестве гидрофобного или антифрикционного материала.

Полистирол. Этот материал не подвержен воздействию кислот. Его, как и фторопласт и полиамид, можно считать изолятором. Очень прочный в отношении механических нагрузок. Полистирол используется везде. Например, он хорошо зарекомендовал себя как конструкционный и электроизоляционный материал. Используется в электротехнике и радиотехнике.

Вероятно, самым известным полимером для нас является полиэтилен. Материал устойчив к воздействию агрессивных сред, абсолютно не пропускает влагу. Если упаковка изготовлена ​​из полиэтилена, вы можете не бояться, что ее содержимое испортится под воздействием сильного дождя. Полиэтилен также является диэлектриком. Его применение обширно. Из него изготавливаются трубные конструкции, различные электротехнические изделия, изоляционная пленка, оболочки для телефонных и силовых кабелей, детали для радио и другого оборудования.

Полихлорвинил является высокополимерным веществом. Это синтетический и термопластичный. Он имеет структуру асимметричных молекул. Почти не пропускает воду и производится прессованием штамповкой и формовкой. Поливинилхлорид чаще всего используется в электротехнической промышленности. На его основе созданы различные теплоизоляционные шланги и шланги для химической защиты, аккумуляторные батареи, изоляционные гильзы и прокладки, провода и кабели. Поливинилхлорид также является отличным заменителем вредного свинца. Его нельзя использовать в качестве высокочастотных цепей в виде диэлектрика. И все благодаря тому, что в этом случае показатели диэлектрических потерь будут высокими. Обладает высокой проводимостью.

Заключение

Как известно, такие промышленные материалы, как керамогранит, керамическая плитка, каменное литье и керамика, являются аморфно-кристаллическими веществами, поскольку содержат в своем составе стекловидные фазы и одновременно кристаллы. Следует отметить, что свойства материалов не зависят от содержания в нем стеклянных фаз.

Хорошо известно, что существует четыре агрегатных состояния: твердое, жидкое, газообразное и плазменное. Аморфные твердые вещества также могут быть кристаллическими. При такой структуре может наблюдаться пространственная периодичность в расположении частиц. Эти частицы в кристаллах могут совершать периодические движения. Во всех телах, которые мы наблюдаем в газообразном или жидком состоянии, можно заметить движение частиц в виде хаотического беспорядка.

Аморфные твердые вещества (например, металлы в конденсированном состоянии: эбонит, изделия из стекла, смолы) можно назвать замороженными жидкостями, потому что, когда они меняют форму, вы можете заметить такую характерную особенность, как вязкость.

Присылайте задания в любое время дня и ночи в whatsapp.

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Аморфные тела: свойства, примеры веществ, сферы применения

В естественной среде твёрдые тела могут находиться в кристаллическом или аморфном состоянии. Присутствующие между ними различия связаны не только с базовыми свойствами, но и с физическими характеристиками. Все кристаллы обладают чётким порядком расположения имеющихся атомов. А вот для аморфных веществ несвойственна упорядоченная структура. Твёрдые объекты находятся в конденсированном состоянии. Свойства и примеры аморфных тел изучают в 8 классе на уроках физики.

  1. Краткое описание
  2. Базовые свойства
  3. Особенности стеклообразных веществ
  4. Полимеры и их использование
  5. Изотропность веществ

Краткое описание

Хаотичный принцип размещения атомов свойственен тем телам, которые пребывают в аморфном (конденсированном) состоянии. Это влияет на итоговые физические и химические характеристики твёрдых материалов. В научной среде часто встречаются ситуации, когда все присутствующие атомы расположены максимально упорядоченно. По характеристикам аморфные вещества больше напоминают жидкости. Но определённые различия присутствуют.

В конденсированном состоянии вещества не являются устойчивыми. Под воздействием различных факторов твёрдое тело может быть подвергнуто изменениям. По истечении большого промежутка времени конденсированное вещество может перейти в кристаллическое состояние. Но для этого должен пройти не один год.

Если в школьном докладе нужно описать аморфность, тогда нужно учесть, что этот термин характеризует особое состояние вещества, когда в его строении отсутствует всякая правильность. Дополнительно можно привести пример, где именно в быту используются конденсированные тела:

  • Сахарный леденец.
  • Шоколад.
  • Жемчуг.
  • Жевательные резинки.
  • Швейные булавки.

К аморфным телам можно отнести множество веществ, которые активно используются человечеством. Например: пластмассы, стекло, парафин, каучук, эбонит.

При определённых условиях в аморфное состояние могут переходить даже те вещества, которые чаще всего обладают кристаллической структурой. К примеру, SiO2 может быть расплавлен под воздействием температуры +1700 °C. После охлаждения будет образован плавленый кварц, который обладает гораздо меньшей плотностью, нежели кристаллическое вещество. Эти явления подробно изучают на уроках физики.

Читайте также:
Химические свойства этилена - применение, гидратация

Базовые свойства

Все твёрдые тела без кристаллической структуры обладают похожими характеристиками, что связано с их принципом строения. Наибольшее значение имеют следующие свойства:

  • По принципу направления вещества в конденсированном состоянии являются изотропными. Это значит, что все анализируемые свойства будут абсолютно одинаковыми.
  • Нет чёткой температуры, при которой материал начинает плавиться. Переход веществ в жидкое состояние происходит постепенно, так как всё зависит от того, как скоро твёрдое тело приобретёт более размягчённую структуру.
  • Показатель текучести. Этим свойством наделены вещества, которые человек может визуально наблюдать в виде потёков на старом стекле.
  • Любое вещество в аморфном состоянии обладает гораздо большей внутренней энергией, чем в обычном кристалле. Такое свойство твёрдых тел имеет огромное значение в промышленности. Аморфные тела могут переходить в кристаллическое состояние. Например, помутнение стекла в результате многолетней эксплуатации. Этот эффект связан с образованием микроскопических кристаллов, которые обладают совершенно другими оптическими характеристиками, чем аморфная среда.

В естественных условиях существуют вещества, которые одновременно могут обладать свойствами кристаллов и жидкостей. Если тело пребывает именно в таком состоянии, тогда оно будет являться жидкокристаллическим. Чаще всего к этой категории относятся различные вещества органического происхождения. В этом случае молекулы представлены в виде пластин. Они также могут иметь нитевидную форму.

Особенности стеклообразных веществ

В естественной среде можно встретить такие жидкости, которые даже в лабораторных условиях невозможно преобразовать в кристаллы посредством постепенного снижения температуры. Это связано с тем, что сложный принцип строения молекул препятствует образованию регулярной кристаллической решётки. К этой категории можно отнести молекулы некоторых полимеров органического происхождения.

Если попробовать задействовать ускоренное и максимально глубокое охлаждение, тогда можно будет практически любое вещество перевести в стеклообразное состояние. Явная кристаллическая решётка будет отсутствовать, но тело может частично кристаллизироваться (в рамках микроскопических кристаллов). Но это аморфное состояние является метастабильным, из-за чего может сохраняться только при условии создания оптимальных термодинамических условий.

Технология быстрого и глубокого охлаждения отличается тем, что задействованное вещество просто не будет успевать кристаллизироваться, из-за чего преобразуется в стекло. Это значит, что чем выше скорость снижения температуры материала, тем меньше вероятность его кристаллизации. В качестве примера можно рассмотреть принцип серийного изготовления металлических стёкол. Для получения качественного товара скорость охлаждения материала находится в пределах от 100 тыс. до 1 млн К/сек.

Из жидкой вулканической магмы возникает вещество, которое в природе может существовать в стеклообразном состоянии. Натуральный материал взаимодействует с холодной водой либо воздухом и быстро охлаждается. Речь касается вулканического стекла.

Не менее интересное вещество образуется в результате плавления падающего метеорита. Под воздействием внешних факторов формируется полудрагоценный камень — молдавит.

Полимеры и их использование

В качестве примера применения аморфных веществ можно рассмотреть полимеры. Их особенность в том, что даже твёрдые тела могут при создании подходящих условий постепенно перейти в жидкость. Если эти вещества подвергнуть замораживанию, тогда можно будет заметить, что они примут стеклообразную форму и проявят все характеристики твёрдых полимеров. Тела станут эластичными из-за поэтапного нагрева.

Такого вида аморфные вещества получили большой спрос в повседневной жизни человека. Полимеры активно используют в различных отраслях:

  • Серийное производство электроизоляционных материалов. Например, поливинилхлорид или известные каждому пластиковые окна из ПВХ. Эти материалы характеризуются повышенной устойчивостью к возгоранию, так как являются трудногорючими. Поливинилхлорид обладает отличными электроизоляционными свойствами, а также повышенной механической прочностью.
  • Синтетические каучуки и эластомеры.
  • Полиамиды. Изготавливаемые пластмассы обладают повышенной прочностью и стойкостью к преждевременному износу. Доступность и высокое качество этих материалов используется в машиностроении, авиационной и текстильной промышленностях, а также в традиционной медицине.
  • Самым известным и востребованным полимером является полиэтилен. Этот материал устойчив к негативному воздействию окружающей среды, не пропускает влагу. Если упаковка товара изготовлена из полиэтилена, тогда можно не беспокоиться, что содержимое будет испорчено в результате намокания. Это аморфное тело является хорошим диэлектриком. Из полиэтилена на серийном уровне изготавливают трубные конструкции, электрические детали, изоляционную плёнку, элементы для радиоаппаратуры.
  • Полистирол. Этот материал получил большой спрос благодаря тому, что он противостоит агрессивному воздействию кислот. Полистирол обладает высокой прочностью в отношении механического воздействия. Он зарекомендовал себя как надёжный электроизоляционный и конструкционный материал. Чаще всего применяется в радио- и электротехнике.
Читайте также:
Аллотропные модификации - формы, причины видоизменения

Не менее востребованным является полихлорвинил, который практически не пропускает воду и получил большой спрос в электрической промышленности. На основе этого материала изготавливают аккумуляторные банки, теплоизоляционные шланги, провода и кабели.

Изотропность веществ

В кристаллических телах все физические свойства имеют равное направление. В аморфных веществах ситуация кардинально противоположная. Именно это явление называется изотропностью. Аморфное тело по-разному проводит теплоту и электричество по всем имеющимся направлениям. Если речь идет о звуке, то он тоже будет распространяться неравномерно. Эти свойства аморфных тел активно применяются в современных технологиях.

Наибольший спрос в производстве получили сплавы металлов, не обладающие кристаллической структурой. Их принято называть металлическими стёклами (материал образуется при сверхбыстром охлаждении расплава, что снижает вероятность кристаллизации). Такой подход используется на серийном уровне. Все электрические, механические и другие свойства существенно превосходят характеристики обычных металлов.

В медицинской отрасли большой спрос получили аморфные сплавы, так как показатель их прочности существенно превосходит параметры титана. Из этого материала изготавливают различные пластины и винты, которые необходимы для соединения сломанных костей. В отличие от титановых деталей аморфные сплавы постепенно распадаются и со временем успешно заменяются костным материалом. Такое лечение является менее травматичным для пациента.

Высококачественные аморфные сплавы получили спрос в серийном производстве арматуры, металлорежущих инструментов, различных пружин и деталей сложных механизмов. Эти товары отличаются не только своей надёжностью, но и долговечностью.

В Японии специалисты смогли разработать уникальный сплав, который хорошо пропускает магнитные волны. Этот материал используют для изготовления сердечников трансформаторов вместо привычных текстурованных листов, что позволяет снизить в 20 раз потери на вихревых токах. Учёные пришли к выводу, что аморфные сплавы обладают уникальными свойствами, благодаря которым можно сделать ещё не одно интересное открытие.

Аморфные тела

Средняя оценка: 4.3

Всего получено оценок: 203.

Средняя оценка: 4.3

Всего получено оценок: 203.

Твердые тела существуют в двух основных состояниях, отличающихся своим внутренним строением, что приводит различию их физических свойств. Это — кристаллическое и аморфное состояния твердых тел. Основным признаком кристаллов является строгий, повторяющийся порядок расположения атомов. Аморфные вещества (от греческого слова “аморфос” — бесформенный) не имеют упорядоченной, кристаллической структуры.

Структура аморфных тел

В телах, находящихся в аморфном состоянии, отсутствует четкий порядок расположения атомов. Существует только, так называемый ближний порядок, когда ближайшие атомы располагаются относительно упорядоченно. По своей структуре аморфные вещества похожи на жидкости.

Рис. 1. Внутреннее строение (решетка) кристаллического твердого тела и структура аморфного тела.

Аморфное состояние вещества, в отличие от кристаллического, не является устойчивым. По прошествии некоторого времени аморфное вещество постепенно переходит в кристаллическое. Правда, это время измеряется годами и десятилетиями.

В аморфном состоянии могут находиться и такие вещества, которые обычно имеют кристаллическую структуру. Например, кристалл кварца SiO2 если его расплавить (при температуре 1700 0 С), при охлаждении образует плавленый кварц, имеющий меньшую плотность, чем кристаллический, и обладающий свойствами одинаковыми по всем направлениям, притом сильно отличающимися от свойств кристаллического кварца.

Примеры аморфных тел

Аморфными являются огромное количество веществ. Вот только некоторые, хорошо известные вещества: парафин, воск, сургуч, эбонит, шоколад, канифоль, смола, стекло, плексиглас, каучук, стекло, различные пластмассы.

Рис. 2. Примеры аморфных веществ.

Свойства аморфных тел

В силу своего строения, в отличие от кристаллических тел, аморфные тела обладают следующими основными свойствами:

  • Аморфные вещества изотропны по всем направлениям. Это означает, что все физические свойства (тепловые, электрические, оптические, механические) аморфных тел оказываются абсолютно одинаковы независимо от направления.
  • Текучесть — это пример свойства этих тел, который визуально можно наблюдать в виде потеков на стекле, долго простоявшем в окне.
  • Отсутствие определенной температуры плавления.

Рис. 3. Графики перехода аморфного и кристаллического тел в жидкое состояние.

Есть вещества, обладающие одновременно свойствами и жидкости и кристалла, а именно текучестью и анизотропией. Такое состояние вещества называется жидкокристаллическим. В основном жидкими кристаллами являются органические вещества, молекулы которых имеют форму плоских пластин или нитевидную форму. Эти вещества являются основой для жидкокристаллических экранов телевизоров.

Что мы узнали?

Итак, мы узнали, что из себя представляют твердые тела в аморфном состоянии. Структура этих веществ не имеет упорядоченного порядка размещения атомов. Физические свойства аморфных тел не зависят от направления воздействия и ориентации тела.

Аморфные тела

Аморфные тела (структура диоксида кремния)

Твердые тела разделяют на аморфные и кристаллические, в зависимости от их молекулярной структуры и физических свойств.

В отличие от кристаллов молекулы и атомы аморфных твердых тел не формируют решетку, а расстояние между ними колеблется в пределах некоторого интервала возможных расстояний. Иначе говоря, у кристаллов атомы или молекулы взаимно расположены таким образом, что формируемая структура может повторяться во всем объеме тела, что называется дальним порядком. В случае же с аморфными телами – сохраняется структура молекул лишь относительно каждой одной такой молекулы, наблюдается закономерность в распределении только соседних молекул – ближний порядок. Наглядный пример представлен ниже.

На рисунке слева (а) изображена решетка молекул кварца, а справа (б) расположение молекул кварцевого стекла, которое является аморфным телом.

К аморфным телам относится стекло и другие вещества в стеклообразном состоянии, канифоль, смолы, янтарь, сургуч, битум, воск, а также органические вещества: каучук, кожа, целлюлоза, полиэтилен и др.

Свойства аморфных тел

Особенность строения аморфных твердых тел придает им индивидуальные свойства:

  1. Слабо выраженная текучесть – одно из наиболее известных свойств таких тел. Примером будут потеки стекла, которое долгое время стоит в оконной раме.
  2. Аморфные твердые тела не обладают определенной температурой плавления, так как переход в состояние жидкости во время нагрева происходит постепенно, посредством размягчения тела. По этой причине к таким телам применяют так называемый температурный интервал размягчения.

График перехода аморфного тела в жидкое состояние изображен пунктирной линией (2), а график перехода обычного твердого тела в жидкое состояние – сплошной (1).

  1. В силу своей структуры такие тела являются изотропными, то есть их физические свойства не зависят от выбора направления.
  2. Вещество в аморфном состоянии обладает большей внутренней энергией, нежели в кристаллическом. По этой причине аморфные тела способны самостоятельно переходить в кристаллическое состояние. Данное явление можно наблюдать как результат помутнения стекол с течением времени.

Стеклообразное состояние

В природе существуют жидкости, которые практически невозможно перевести в кристаллическое состояние посредством охлаждения, так как сложность молекул этих веществ не позволяет им образовать регулярную кристаллическую решетку. К таким жидкостям относятся молекулы некоторых органических полимеров.

Материалы по теме

Жидкие кристаллы

Однако, при помощи глубокого и быстрого охлаждения, практически любое вещество способно перейти в стеклообразное состояние. Это такое аморфное состояние, которое не имеет явной кристаллической решетки, но может частично кристаллизироваться, в масштабах малых кластеров. Данное состояние вещества является метастабильным, то есть сохраняется при некоторых требуемых термодинамических условиях.

При помощи технологии охлаждения с определенной скоростью вещество не будет успевать кристаллизоваться, и преобразуется в стекло. То есть чем выше скорость охлаждения материала, тем меньше вероятность его кристаллизации. Так, например, для изготовления металлических стекол потребуется скорость охлаждения, равная 100 000 – 1 000 000 Кельвин в секунду.

В природе вещество существует в стеклообразном состоянии возникает из жидкой вулканической магмы, которая, взаимодействуя с холодной водой или воздухом, быстро охлаждается. В данном случае вещество зовется вулканическим стеклом. Также можно наблюдать стекло, образованная в результате плавления падающего метеорита, взаимодействующего с атмосферой – метеоритное стекло или молдавит.

Молдавит, естественное стекло, образованное ударом метеорита, из Беседин, Богемия, Чехия.

Аморфные тела: характеристика, описание и свойства

Нужно помнить, что не все тела, которые существуют на планете Земля, имеют кристаллическое строение. Исключения из правила получили название «аморфные тела». Чем же они отличаются? Исходя из перевода данного термина – аморфный – можно предположить о том, что такие вещества отличаются от других своей формой или видом. Речь идет об отсутствии так называемой кристаллической решетки. Процесс расщепления, при котором появляются грани, не происходит. Аморфные тела также отличаются тем, что не зависят от окружающей среды, и их свойства постоянны. Такие вещества называются изотропными.

Небольшая характеристика аморфных тел

Из школьного курса физики можно вспомнить то, что аморфные вещества имеют такое строение, при котором атомы в них расположены в хаотичном порядке. Определенное место могут иметь лишь структуры-соседи, где такое расположение является вынужденным. Но все же проводя аналогию с кристаллами, аморфные тела не обладают строгой упорядоченностью молекул и атомов (в физике такое свойство получило название «дальний порядок»). В результате исследований было выяснено, что по своей структуре данные вещества схожи с жидкостями.

Некоторые тела (в качестве примера можно взять диоксид кремния, чья формула SiO2) могут одновременно находиться в аморфном состоянии и иметь кристаллическую структуру. Кварц в первом варианте обладает структурой неправильной решетки, во втором – правильного шестиугольника.

Свойство №1

Как уже говорилось выше, аморфные тела не обладают кристаллической решеткой. Их атомы и молекулы имеют ближний порядок размещения, что и будет первым отличительным свойством данных веществ.

Свойство №2

Текучестью данные тела обделены. Для того чтобы лучше объяснить второе свойство веществ, можно сделать это на примере воска. Ни для кого не секрет, что если налить воду в воронку, то она просто выльется из нее. То же самое будет и с любыми другими текучими веществами. А свойства аморфных тел не позволяют им проделывать такие «трюки». Если воск поместить в воронку, то он предварительно растечется по поверхности и лишь потом начнет стекать с нее. Это связано с тем, что молекулы в веществе перескакивают из одного положения равновесия в абсолютно другое, не имея основного местоположения.

Свойство №3

Пора поговорить о процессе плавления. Следует запомнить тот факт, что аморфные вещества не имеют определенной температуры, при которой начинается плавление. Во время поднятия градуса тело постепенно становится мягче и затем превращается в жидкость. Физики всегда делают упор не на температуре, при которой данный процесс начал происходить, а на соответствующем температурном интервале плавления.

Свойство №4

О нем уже было сказано выше. Аморфные тела изотропны. То есть их свойства в любом направлении неизменны, даже если условия пребывания в местах различны.

Свойство №5

Хоть раз каждый человек наблюдал, что с течением определенного промежутка времени стекла начинали мутнеть. Это свойство аморфных тел связно с повышенной внутренней энергией (она в разы больше, чем у кристаллов). Из-за этого данные вещества спокойно сами могут перейти в кристаллическое состояние.

Переход к кристаллическому состоянию

Спустя определенный промежуток времени любое аморфное тело переходит в кристаллическое состояние. Это можно наблюдать в привычной жизни человека. Например, если оставить леденец или мед на несколько месяцев, то можно заметить, что они оба потеряли свою прозрачность. Обычный человек скажет, что они просто засахарились. И правда, если разломать тело, то можно заметить наличие кристаллов сахара.

Итак, говоря об этом, необходимо уточнить, что самопроизвольное превращение в другое состояние связано с тем, что аморфные вещества неустойчивы. Сравнивая их с кристаллами, можно понять, что последние в разы «мощнее». Объяснить факт можно благодаря межмолекулярной теории. Согласно ей, молекулы постоянно перескакивают с одного места на другое, тем самым заполняя пустоты. Со временем образуется устойчивая кристаллическая решетка.

Плавление аморфных тел

Процессом плавления аморфных тел называется момент, когда с поднятием температуры все связи между атомами рушатся. Именно тогда вещество превращается в жидкость. Если условия плавления таковы, что давление одинаково на протяжении всего периода, то температура также должна быть фиксированной.

Жидкие кристаллы

В природе существуют тела, которые имеют жидкокристаллическую структуру. Как правило, они входят в перечень органических веществ, а их молекулы обладают нитевидной формой. Тела, о которых идет речь, обладают свойствами жидкостей и кристаллов, а именно текучестью и анизотропией.

В таких веществах молекулы располагаются параллельно друг другу, однако, между ними нефиксируемое расстояние. Они движутся постоянно, но ориентацию менять несклонны, поэтому постоянно находятся в одном положении.

Аморфные металлы

Аморфные металлы больше известны обычному человеку под названием металлические стекла.

Еще в 1940 году ученые заговорили о существовании данных тел. Уже тогда стало известно, что специально полученные вакуумным напылением металлы, не имели кристаллических решеток. И лишь через 20 лет было произведено первое стекло такого типа. Особого внимания у ученых оно не вызвало; и только спустя еще 10 лет о нем заговорили американские и японские профессионалы, а потом уже корейские и европейские.

Аморфные металлы отличаются вязкостью, достаточно высоким уровнем прочности и стойкостью к коррозии.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: