Оксид азота – формула, свойства, получение и применение, влияние

Оксиды азота (закись, ангидриды, диоксид): свойства и формулы веществ

Азот находится в V подгруппе периодической системы Менделеева. В природе этот элемент существует в виде простого газа, встречается в свободном состоянии в воздухе (70−80% по объему), входит в состав сложных органических веществ (пептиды, белки). Оксиды азота (формула вещества будет зависеть от валентности) — бинарные соединения с кислородом.

  1. Виды кислородных соединений азота
  2. Описание и характеристики
  3. N2O — одновалентная смесь
  4. Монооксид (двухвалентный) — NO
  5. Бурый газ («лисий хвост») — NO2
  6. Азотистый ангидрид N2O3
  7. N2O5 — высший оксид

Виды кислородных соединений азота

Всего известно 10 разновидностей оксидов азота. Однако «классических» всего 5. Среди них:

  • N2O — закись азота.
  • NO — монооксид (окись) азота.
  • N2O3 — азотистый ангидрид.
  • NO2 — диоксид азота.
  • N2O5 — азотный ангидрид.

Первые две формулы — несолеобразующие соединения, оставшиеся три относятся к солеобразующим веществам. Все оксиды этого неметалла ядовиты. Исключение — N2O, который обладает слабым наркотическим действием и применяется медиками в качестве наркозного средства.

Закись азота — «веселящий газ» — раньше использовалась при родовспоможении в качестве анальгетика, хотя и довольно слабого. Главное преимущество такого наркоза состоит в том, что он не оказывает негативного токсического влияния на молодую мать и малыша: попадая в организм, газ распадается на «привычные» человеку азот и кислород.

Другие соединения — димер диоксида азота (сложная молекула, состоящая из двух мономолекул) с формулой N2O4, нитритный радикал NO3, и три малоустойчивых комбинации: NON3, NO2N3, N (NO2)3.

Описание и характеристики

Физические и химические свойства каждого подвида оксидов этой группы различны. Например, несолеобразующие соединения (закись и оксид азота 2-валентный) не вступают в реакции с кислотами, щелочами и водой. А солеобразующие взаимодействуют с этими соединениями, причем каждому из них соответствует определенная кислота. Например:

  • N2O3 — азотистая (HNO2) — нестойкое соединение, ее растворы окрашены в нежно-голубой цвет.
  • N2O — азотная (HNO3) — очень сильная кислота.

«Царская водка» — раствор азотной и соляной кислоты (а не серной и соляной, как заблуждаются некоторые люди) в соотношении 1:3. Это одна из наиболее сильных кислотных смесей, способных растворить даже инертное золото. Поэтому сотрудники лабораторий, работая с этим веществом даже в перчатках, всегда снимают все ювелирные изделия с рук.

N2O — одновалентная смесь

При нормальных условиях — это газ, не имеющий цвета и запаха. При снижении температуры он меняет свое агрегатное состояние:

  • При -89°C он становится жидким.
  • При -91°C — затвердевает.

Соединение не отличается высокой устойчивостью — разлагается на кислород и азот:

Эта смесь значительно богаче по содержанию кислорода, чем обычный воздух, поэтому вещества, попадающие в нее, горят. Например, если поместить в сосуд, заполненный этим соединением, тлеющую лучину, то она сразу же вспыхнет. Гемиоксид получают путем термического разложения аммонийной селитры:

NH4NO3 → N2O + 2H2O.

Эта реакция протекает спокойно до 300 °C. При повышении температуры может произойти взрыв.

N2O оказывает возбуждающее действие на нервную систему: при вдыхании происходит легкое «опьянение» и повышается сонливость. Одновременно с этим притупляются и болевые ощущения.

Монооксид (двухвалентный) — NO

Бесцветный газ. Имеет слабый запах, при вдыхании оставляет сладковатый привкус. При изменении температуры он переходит в другое агрегатное состояние:

  • При повышении до 151.8°C — становится жидким.
  • Понижение до -163.7°C сделает его твердым.

Это несолеобразующий оксид. Для этого вещества характерны только реакции присоединения — хорошо «сливается» с хлором и кислородом:

2NO + Cl2 → 2NOCL (нитрозилхлорид — газ красного цвета, очень токсичный, имеет резкий, удушливый запах);

Этот монооксид кислород практически не отдает, поэтому в его атмосфере реакции горения происходят только с теми веществами, которые очень «энергично» сливаются с кислородом (например, фосфор).

Получают NO каталитическим окислением аммиака в присутствии катализатора (промышленный способ). Ранее его «доставали» при продувке воздуха через электрическую дугу. Но сейчас этот способ устарел — при нем образуется лишь малое количество нужной смеси.

В лабораториях NO получают путем воздействия на медь слабого раствора азотной кислоты:

3Cu + 8HNO3 → 3Cu (NO3)2 + 2NO + 4H2O.

Примечание: в небольших дозах монооксид образуется при грозовых разрядах.

Бурый газ («лисий хвост») — NO2

Газ с характерным запахом, тяжелее воздуха, легко сжижается. Имеет характерную окраску — рыжий цвет. Причем чем выше будет окружающая температура, тем более ярким окажется оттенок соединения.

Это солеобразующий оксид. При растворении в воде образует азотную и азотистую кислоты:

2NO2 + H2O → HNO3 (азотная кислота) + HNO2 (азотистая кислота).

При взаимодействии со щелочами он образует соли этих двух кислот:

2NO2 + 2NaOH → NaNO3 + NaNO2 + H2O.

В промышленности NO2 получают при окислении монооксида азота (NO):

В лабораторных условиях его получают при реакции воздействия концентрированной азотной кислоты на металлы и неметаллы, а также разложением нитратов:

  • Cu + 4HNO3 → Cu (NO3)2 + 2NO2 + H2O;
  • S + 6HNO3 → H2SO4 + 6NO2 + 2H2O;
  • 2Pb (NO3)2 → 2PbO + 4NO2 + O2.

Диоксид азота применяется для получения азотной кислоты.

Читайте также:
Бензол - свойства вещества, формула, характеристика, состав

NO2 часто является побочным продуктом многих химических производств. Именно он дает «ржавую» окраску (благодаря которой его и прозвали «лисий хвост») выбросам, попадающим в атмосферу из заводских труб. Улетучиваясь в воздух, этот газ представляет серьезную опасность для окружающей среды — например, он вызывает кислотные дожди. При этом, соединяясь с водой, он еще является и сильным коррозионным агентом. Кроме того, для человека эти «выхлопы» тоже вредны, так как приводят к раздражению слизистых оболочек, изменению состава крови (понижается уровень гемоглобина).

Азотистый ангидрид N2O3

Это жидкость, окрашенная в темно-синий цвет. В нормальных условиях соединение неустойчиво (температура кипения всего 3,5°C), и разлагается на монооксид (NO) и диоксид (NO2). При охлаждении до -102°C становится твердым.

При взаимодействии с водой образует азотистую кислоту, которая, в свою очередь, распадается на монооксид и азотную кислоту (HNO3):

  • N2O3 + H2O → 2HNO2;
  • 3HNO2 → HNO3 + 2NO + H2O (реакция идет при нагревании).

В реакциях со щелочами образуются соли азотистой кислоты:

N2O3 + 2NaOH → 2NaNO2 + H2O.

Получают азотистый ангидрид при охлаждении смеси монооксида и диоксида:

Примечание: азотистый ангидрид — промежуточный продукт, получаемый в производстве серной кислоты нитрозным способом. Сам же N2O3 никакого практического применения не имеет.

N2O5 — высший оксид

Пентаоксид диазота (или азотный ангидрид) — белое кристаллическое вещество, очень нестойкое (плавится при температуре 32,3°C). Какие химические реакции для него характерны:

  • Реакция взаимодействия с водой: N2O5 + H2O → 2HNO3.
  • Взаимодействие со щелочами: N2O5 + 2NaOH → 2NaNO3 + H2O.
  • Взаимодействие с перекисью водорода (H2O2) — результатом этой реакции станет образование HNO4 (надазотная кислота). Но этот процесс должен проводиться при низких температурах (-80°C).
  • Реакция разложения (часто протекает со взрывом): 2N2O5 → 4NO2 + O2.

Получают азотный ангидрид путем воздействия на безводную азотную кислоту, или же реакцией взаимодействия озона на NO2:

  • 2HNO3 + P2O5 → N2O5 + 2HPO3 (метафосфорная кислота) — реакция проводится под воздействием температуры;
  • 2NO2 + O3 → N2O5 + O2.

Азотный ангидрид — очень сильный окислитель, он бурно вступает в реакции со многими органическими соединениями. Однако практического применения это соединение не находит.

Оксид азота – формула, свойства, получение и применение, влияние

Азот – неметаллический элемент Va группы периодической таблицы Д.И. Менделеева. Составляет 78% воздуха. Входит в состав белков, являющихся важной частью живых организмов.

Температура кипения азота составляет -195,8 °C. Однако быстрого замораживания объектов, которое часто демонстрируют в кинофильмах, не происходит. Даже для заморозки растения нужно продолжительное время, это связано с низкой теплоемкостью азота.

Общая характеристика элементов Va группы

От N к Bi (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Азот, фосфор и мышьяк являются неметаллами, сурьма – полуметалл, висмут – металл.

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns 2 np 3 :

  • N – 2s 2 2p 3
  • P – 3s 2 3p 3
  • As – 4s 2 4p 3
  • Sb – 5s 2 5p 3
  • Bi – 6s 2 6p 3
Основное и возбужденное состояние азота

При возбуждении атома фосфора электроны на s-подуровне распариваются и переходят на p-подуровень. Однако с азотом ситуация иная. Поскольку азот находится во втором периоде, то 3ий уровень у него отсутствует, а значит распаривание электронов на s-подуровне невозможно – возбужденное состояние у азота отсутствует.

Сравнивая возможности перемещения электронов у азота и фосфора, разница становится очевидна.

Природные соединения

В природе азот встречается в виде следующих соединений:

  • Воздух – во вдыхаемом нами воздухе содержится 78% азота
  • Азот входит в состав нуклеиновых кислот, белков
  • KNO3 – индийская селитра, калиевая селитра
  • NaNO3 – чилийская селитра, натриевая селитра
  • NH4NO3 – аммиачная селитра (искусственный продукт, в природе не встречается)

Селитры являются распространенными азотными удобрениями, которые обеспечивают быстрый рост и развитие растений, повышают урожайность. Однако, следует строго соблюдать правила их применения, чтобы не превысить допустимые концентрации.

В промышленности азот получают путем сжижения воздуха. В дальнейшем путем испарения из сжиженного воздуха получают азот.

Применяют и метод мембранного разделения, при котором через специальный фильтр из сжатого воздуха удаляют кислород.

В лаборатории методы не столь экзотичны. Чаще всего получают азот разложением нитрита аммония

Также азот можно получить путем восстановления азотной кислоты активными металлами.

Азот восхищает – он принимает все возможные для себя степени окисления от -3 до +5.

Молекула азота отличается большой прочностью из-за наличия тройной связи. Вследствие этого многие реакции эндотермичны: даже горение азота в кислороде сопровождается поглощением тепла, а не выделением, как обычно бывает при горении.

  • Реакция с металлами

Без нагревания азот взаимодействует только с литием. При нагревании реагирует и с другими металлами.

Реакция с неметаллами

Важное практическое значение имеет синтез аммиака, который применяется в дальнейшим при изготовлении удобрений, красителей, лекарств.

Аммиак

Бесцветный газ с резким едким запахом, раздражающим слизистые оболочки. Раствор концентрацией 10% аммиака применяется в медицинских целях, называется нашатырным спиртом.

Читайте также:
Калий - конфигурация, свойства, способы применения и получения

В промышленности аммиак получают прямым взаимодействием азота и водорода.

В лабораторных условиях сильными щелочами действуют на соли аммония.

Аммиак проявляет основные свойства, окрашивает лакмусовую бумажку в синий цвет.

    Реакция с водой

Образует нестойкое соединение – гидроксид аммония, слабое основание. Оно сразу же распадается на воду и аммиак.

Как основание аммиак способен реагировать с кислотами с образованием солей.

NH3 + HCl → NH4Cl (хлорид аммония)

Поскольку азот в аммиаке находится в минимальной степени окисления -3 и способен только ее повышать, то аммиак проявляет выраженные восстановительные свойства. Его используют для восстановления металлов из их оксидов.

Горение аммиака без катализатора приводит к образованию азота в молекулярном виде. Окисление в присутствии катализатора сопровождается выделением NO.

Соли аммония

Помните, что по правилам общей химии, если по итогам реакции выпадает осадок, выделяется газ или образуется вода – реакция идет.

    Реакции с кислотами

Реакции с щелочами

В реакциях с щелочами образуется гидроксид аммония – NH4OH. Нестойкое основание, которое легко распадается на воду и аммиак.

Реакции с солями

В воде ион аммония подвергается гидролизу с образованием нестойкого гидроксида аммония.

Оксид азота I – N2O

Закись азота, веселящий газ – N2O – обладает опьяняющим эффектом. Несолеобразующий оксид. При н.у. является бесцветным газом с приятным сладковатым запахом и привкусом. В медицине применяется в больших концентрациях для ингаляционного наркоза.

Получают N2O разложением нитрата аммония при нагревании:

Оксид азота I разлагается на азот и кислород:

Оксид азота II – NO

Окись азота – NO. Несолеобразующий оксид. При н.у. бесцветный газ, на воздухе быстро окисляется до оксида азота IV.

В промышленных масштабах оксид азота II получают при каталитическом окислении аммиака.

В лабораторных условиях – в ходе реакции малоактивных металлов с разбавленной азотной кислотой.

На воздухе быстро окисляется с образованием бурого газа – оксида азота IV – NO2.

Оксид азота III – N2O3

При н.у. жидкость синего цвета, в газообразной форме бесцветен. Высокотоксичный, приводит к тяжелым ожогам кожи.

Получают N2O3 в две стадии: сначала реакцией оксида мышьяка III с азотной кислотой (две реакции, в которых образуется смесь оксидов азота), затем охлаждением полученной смеси газов до температуры – 36 °C.

При охлаждении газов образуется оксид азота III.

Является кислотным оксидом. соответствует азотистой кислоте – HNO2, соли которой называются нитриты (NO2 – ). Реагирует с водой, основаниями.

Оксид азота IV – NO2

Бурый газ, имеет острый запах. Ядовит.

В лабораторных условиях данный оксид получают в ходе реакции меди с концентрированной азотной кислотой. Также NO2 выделяется при разложении нитратов.

Проявляет высокую химическую активность, кислотный оксид.

Как окислитель NO2 ведет себя в реакциях с фосфором, углеродом и серой, которые сгорают в нем.

Окисляет SO2 в SO3 – на этой реакции основана одна из стадий получения серной кислоты.

Реакции с водой и щелочами

Оксид азота IV соответствует сразу двум кислотам – азотистой HNO2 и азотной HNO3. Реакции с водой и щелочами протекают по одной схеме.

Если растворение в воде оксида проводить в избытке кислорода, образуется азотная кислота.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Перекись водорода ГОСТ 177-88

Перекись водорода (пероксид водорода), H2O2 — простейший представитель пероксидов. Бесцветная жидкость с «металлическим» вкусом, неограниченно растворимая в воде, спирте и эфире. Концентрированные водные растворы взрывоопасны. Пероксид водорода является хорошим растворителем. Из воды выделяется в виде неустойчивого кристаллогидрата H2O2∙2H2O.

Молекула пероксида водорода имеет следующее строение:

Вследствие несимметричности молекула H2O2 сильно полярна (μ = 0,7⋅10 −29 Кл·м). Относительно высокая вязкость жидкого пероксида водорода обусловлена развитой системой водородных связей. Поскольку атомы кислорода имеют неподелённые электронные пары, молекула H2O2 также способна образовывать донорно-акцепторные связи.

Содержание

  • 1 Химические свойства
  • 2 Окислительно-восстановительные свойства
  • 3 Биологические свойства
  • 4 Получение
  • 5 Применение
  • 6 Формы выпуска
  • 7 Опасность применения

Химические свойства

Оба атома кислорода находятся в промежуточной степени окисления −1, что и обусловливает способность пероксидов выступать как в роли окислителей, так и восстановителей. Наиболее характерны для них окислительные свойства:

При взаимодействии с сильными окислителями пероксид водорода выступает в роли восстановителя, окисляясь до атомарного кислорода:

Молекула пероксида водорода сильно полярна, что приводит к возникновению водородных связей между молекулами. Связь O—O непрочна, поэтому H2O2 — неустойчивое соединение, легко разлагается. Также этому может поспособствовать присутствие ионов переходных металлов. В разбавленных растворах пероксид водорода тоже неустойчив и самопроизвольно диспропорционирует на H2O и O. Реакция диспропорционирования катализируется ионами переходных металлов, некоторыми белками:

Однако очень чистый пероксид водорода вполне устойчив.

Читайте также:
Химические свойства водорода ℹ общая характеристика, окислительно-восстановительные реакции с элементами, взаимодействие с соединениями, получение и применение

Пероксид водорода проявляет слабые кислотные свойства (К = 1,4⋅10 −12 ), и поэтому диссоциирует по двум ступеням:

При действии концентрированного раствора H2O2 на некоторые гидроксиды в ряде случаев можно выделить пероксиды металлов, которые можно рассматривать как соли пероксида водорода (Li2O2, MgO2 и др.):

Пероксид водорода может проявлять как окислительные, так и восстановительные свойства. Например, при взаимодействии с оксидом серебра он является восстановителем:

В реакции с нитритом калия соединение служит окислителем:

Пероксидная группа [—O—O—] входит в состав многих веществ. Такие вещества называют пероксидами, или пероксидными соединениями. К ним относятся пероксиды металлов (Na2O2, BaO2 и др.). Кислоты, содержащие пероксидную группу, называют пероксокислотами, например, пероксомонофосфорная H3PO5, пероксодисерная H2S2O8 и пероксоазотная HNO4 кислоты.

Окислительно-восстановительные свойства

Пероксид водорода обладает окислительными, а также восстановительными свойствами. Он окисляет нитриты в нитраты, выделяет йод из йодидов металлов, расщепляет ненасыщенные соединения по месту двойных связей. Пероксид водорода восстанавливает соли золота и серебра, а также марганец при реакции с водным раствором перманганата калия в кислой среде.

При восстановлении H2O2 образуется H2O или ОН-, например:

При действии сильных окислителей H2O2 проявляет восстановительные свойства, выделяя свободный кислород:

Реакцию KMnO4 с H2O2 используют в химическом анализе для определения содержания H2O2:

Окисление органических соединений пероксидом водорода (например, сульфидов и тиолов) целесообразно проводить в среде уксусной кислоты.

Биологические свойства

Пероксид водорода относится к реактивным формам кислорода и при повышенном образовании в клетке вызывает оксидативный стресс. Некоторые ферменты, например глюкозоксидаза, образуют в ходе окислительно-восстановительной реакции пероксид водорода, который может играть защитную роль в качестве бактерицидного агента. В клетках млекопитающих нет ферментов, которые бы восстанавливали кислород до перекиси водорода. Однако несколько ферментных систем (ксантиноксидаза, НАДФ•H-оксидаза, циклооксигеназа и др.) продуцируют супероксид, который спонтанно или под действием супероксиддисмутазы превращается в пероксид водорода.

Получение

Исторически первым промышленным методом синтеза пероксида водорода был электролиз серной кислоты или раствора сульфата аммония в серной кислоте, в ходе которого образуется пероксодисерная кислота, с последующим гидролизом последней до пероксида и серной кислоты:

С середины XX века персульфатный процесс синтеза пероксида водорода был вытеснен антрахиноновым процессом, разработанным компанией BASF в 1930-х. В этом процессе формально идет окисление водорода кислородом воздуха с катализом алкилпроизводными антрахинона:

Процесс основан на автоокислении алкилантрагидрохинонов (обычно 2-этил-, 2-трет-бутил- и 2-пентилантрагидрохинонов) кислородом воздуха с образованием антрахинонов и пероксида водорода. Реакция проводится в растворе алкилантрагидрохинонов в бензоле с добавлением вторичных спиртов, по завершении процесса пероксид водорода экстрагируют из органической фазы водой. Для регенерации исходных антрагидрохинонов бензольный раствор антрахинонов восстанавливают водородом в присутствии каталитических количеств палладия.

Пероксид водорода также может быть получен каталитическим окислением изопропилового спирта:

при этом ценным побочным продуктом этой реакции является ацетон, однако в широких масштабах в промышленности этот метод в настоящее время не используется.

В лабораторных условиях для получения пероксида водорода используют реакцию:

Концентрирование и очистку пероксида водорода проводят осторожной перегонкой.

В последнее время (кон. XX в.) удалось синтезировать H2O3 и H2O4. Эти соединения весьма неустойчивы. При обычных температурах (н.у.) они разлагаются за доли секунды, однако при низких температурах порядка −70 °C существуют часами. Спектро-химическое исследование показывает, что их молекулы имеют зигзагообразную цепную структуру (подобную сульфанам): H—O—O—O—H, H—O—O—O—O—H.

Применение

Благодаря своим сильным окислительным свойствам пероксид водорода нашёл широкое применение в быту и в промышленности, где используется, например, как отбеливатель на текстильном производстве и при изготовлении бумаги. Применяется как ракетное топливо, в качестве окислителя или как однокомпонентное (с разложением на катализаторе), в том числе для привода турбонасосных агрегатов. Используется в аналитической химии, в качестве пенообразователя при производстве пористых материалов, в производстве дезинфицирующих и отбеливающих средств. В промышленности пероксид водорода также находит своё применение в качестве катализатора, гидрирующего агента, как эпоксидирующий агент при эпоксидировании олефинов.

Хотя разбавленные растворы перекиси водорода применяются для небольших поверхностных ран, исследования показали, что этот метод, обеспечивая антисептический эффект и очищение, также продлевает время заживления. Обладая хорошими очищающими свойствами, пероксид водорода на самом деле не ускоряет заживление ран. Достаточно высокие концентрации, обеспечивающие антисептический эффект, могут также продлевать время заживления из-за повреждения прилегающих к ране клеток. Более того, пероксид водорода может мешать заживлению и способствовать образованию рубцов из-за разрушения новообразующихся клеток кожи. Однако в качестве средства для очистки глубоких ран сложного профиля, гнойных затёков, флегмон и других гнойных ран, санация которых затруднена, пероксид водорода остаётся предпочтительным препаратом, так как он обладает не только антисептическим эффектом, но и создаёт большое количество пены при взаимодействии с ферментом каталазой. Это в свою очередь позволяет размягчить и отделить от тканей некротизированные участки, сгустки крови, гноя, которые будут легко смыты последующим введением в полость раны антисептического раствора. Без предварительной обработки пероксидом водорода антисептический раствор не сможет удалить эти патологические образования, что приведет к значительному увеличению времени заживления раны и ухудшит состояние больного.

Читайте также:
Фосфорная кислота - формула, характеристика, получение и применение

Перекись водорода применяют для растворения пробок в слуховых каналах. Раствор вступает в реакцию с ушной серой и растворяет пробку.

Пероксид водорода применяется также для обесцвечивания волос и отбеливания зубов, однако эффект в обоих случаях основан на окислении, а следовательно — разрушении тканей. Во время отбеливания зубов, однако, не происходит разрушения тканей. Пигментированные белки дентина начинают раскручиваться до первичной структуры (как если бы белок яйца из варёного стал более сырым), при этом связи не разрушаются, то есть этот процесс обратим. Эмаль сама по себе прозрачна, и эффект отбеливания достигается за счет разницы в отражении света дентином.

В пищевой промышленности растворы пероксида водорода применяются для дезинфекции технологических поверхностей оборудования, непосредственно соприкасающихся с продукцией. Кроме того, на предприятиях по производству молочной продукции и соков, растворы перекиси водорода используются для дезинфекции упаковки (технология «Тетра Пак»). Для технических целей пероксид водорода применяют в производстве электронной техники.

В быту применяется также для выведения пятен MnO2, образовавшихся при взаимодействии перманганата калия («марганцовки») с предметами (ввиду его восстановительных свойств).

3%-ный раствор пероксида водорода используется в аквариумистике для оживления задохнувшейся рыбы, а также для очистки аквариумов и борьбы с нежелательной флорой и фауной в аквариуме.

С 90-х годов ХХ века 3%-ный раствор пероксида водорода продвигался целителем И. П. Неумывакиным для приёма внутрь как универсальное средство лечения и оздоровления человека. Научного подтверждения допустимости и эффективности данный метод не имеет.

Перекись водорода используется в известном опыте, демонстрирующем многократное увеличение объёма вещества в результате химической реакции.

Формы выпуска

Выпускается в виде водных растворов, стандартная концентрация 1-6 %, 30, 38, 50, 60, 85, 90 и 98 %. 30 % водный раствор пероксида водорода, стабилизированный добавлением фосфатов натрия, называется пергидролем. Выпускаемый в виде таблеток твёрдого клатрата с мочевиной пероксид водорода называется гидроперитом.

Опасность применения

Несмотря на то, что пероксид водорода нетоксичен, его концентрированные растворы при попадании на кожу, слизистые оболочки и в дыхательные пути вызывают ожоги. В больших концентрациях недостаточно чистый пероксид водорода может быть взрывоопасен. Опасен при приёме внутрь концентрированных растворов. Вызывает выраженные деструктивные изменения, сходные с действиями щелочей. Летальная доза 30%-го раствора пероксида водорода (пергидроля) — 50—100 мл.

Пероксид водорода – формула, свойства, способы получения

Главная • Биология • Химия • Резюме • Цены • Контакты

Репетитор по Химии
Конспекты

На этой странице Вы можете найти конспект на тему “Пероксид (перекись) водорода. Химические свойства.” и оценить уровень подготовленного материала. Я надеюсь, что Вы, обращаясь ко мне за помощью, уже не будете покупать кота в мешке. Вы будете знать, что Вашего ребенка или Вас учит знающий свое дело специалист – репетитор по химии. Более подробную информацию обо мне Вы сможете прочитать здесь.

С уважением,
доктор биологических наук,
ведущий научный сотрудник НИИ акушерства и гинекологии им. Д.О.Отта
репетитор по химии и биологии
Соколов Дмитрий Игоревич

Пероксид (перекись) водорода

Кроме воды, известно другое соединение водорода с кислородом – пероксид водорода (Н2О2). В природе он образуется как побочный продукт при окислении многих веществ кислородом воздуха. Следы его постоянно содержатся в атмосферных осадках. Пероксид водорода частично образуется также в пламени горящего водорода, но при остывании продуктов сгорания разлагается.

В довольно больших концентрациях (до нескольких процентах) Н2О2 может быть получена взаимодействием водорода в момент выделения с молекулярным кислородом. Пероксид водорода частично образуется также при нагревании до 2000 °С влажного кислорода, при прохождении тихого электрического разряда сквозь влажную смесь водорода с кислородом и при действии на воду ультрафиолетовых лучей или озона.

Теплота образование пероксида водорода.

Непосредственно определить теплоту образования пероксида водорода из элементов не удаётся. Возможность найти её косвенным путём даёт установленный Г. И. Гессом (1840 г.) закон постоянства сумм тепла: общий тепловой эффект ряда последовательных химических реакций равен тепловому эффекту любого другого ряда реакций с теми же самыми исходными веществами и конечными продуктами.

Строго говоря, закон Гесса следовало бы сформулировать, как “закон постоянства сумм энергий”, потому что при химических превращениях энергия может выделяться или поглощаться не только в тепловой, но и как механическая, электрическая и др. Кроме того, предполагается, что рассматриваемые процессы протекают при постоянном давлении или постоянном объёме. Как правило, именно так и обстоит дело при химических реакциях, а все другие формы энергии могут быть пересчитаны на тепловую. Сущность этого закона особенно наглядно выявляется в свете следующей механической аналогии: общая работа, производимая опускающимся без трения грузом, зависит не от пути, а только от разности начальной и конечной высот. Подобным же образом общий тепловой эффект той или иной химической реакции определяется только разностью теплот образования (из элементов) её конечных продуктов и исходных веществ. Если всё эти величины известны, то для вычисления теплового эффекта реакции достаточно из суммы теплот образования конечных продуктов вычесть сумму теплот образования исходных веществ. Законом Гесса часто пользуются при вычислении теплот таких реакций, для которых прямое экспериментальное их определение трудно или даже невозможно.

Читайте также:
Неметаллы - определение, особенности строения, свойства, получение

В применении к Н2О2 расчёт можно провести на основе рассмотрения двух различных путей образования воды:

1. Пусть первоначально при соединении водорода и кислорода образуется пероксид водорода, который затем разлагается на воду и кислород. Тогда будем иметь следующие два процесса:

Тепловой эффект последней реакции легко определяется экспериментально. Складывая почленно оба уравнения и сокращая одиночные члены, получаем

2. Пусть при соединении водорода с кислородом непосредственно образуется вода, тогда имеем

Так как в обоих случаях и исходные вещества, и конечные продукты одинаковы, 2х + 196 = 573, откуда х = 188,5 кДж. Это и будет теплота образования моля пероксида водорода из элементов.

Пероксид водорода проще всего получать из пероксида бария (ВаО2), действуя на неё разбавленной серной кислотой:

При этом наряду с пероксидом водорода образуется нерастворимый в воде сульфат бария, от которого жидкость может быть отделена фильтрованием. Продаётся Н2О2 обычно в виде 3%- ного водного раствора.

Основным методом получения пероксида водорода является взаимодействие с водой надсерной кислоты (или некоторых её солей), легко протекающее по схеме:

Меньшее значение имеют некоторые новые методы (разложение органических пероксидных соединений и др.) и старый способ получения из ВаО2. Для хранения и перевозки больших количеств пероксида водорода наиболее пригодны ёмкости из алюминия (не ниже 99,6%-ной чистоты).

Пероксид водорода получают в промышленности при реакции с участием органических веществ, в частности, каталитическим окислением изопропилового спирта:

Ценным побочным продуктом этой реакции является ацетон.

Физические свойства.

Чистый пероксид водорода – бесцветная сиропообразная жидкость (с плотностью около 1,5 г/мл), под достаточно уменьшенным давлением перегоняющуюся без разложения. Замерзание Н2О2 сопровождается сжатием (в отличие от воды). Белые кристаллы пероксида водорода плавятся при -0,5 °С, т. е. почти при той же температуре, что и лёд.

Теплота плавления пероксида водорода составляет 13 кДж/моль, теплота испарения – 50 кДж/моль (при 25 °С). Под обычным давлением чистый Н2О2 кипит при 152 °С с сильным разложением (причём пары могут быть взрывоопасны). Для его критических температуры и давления теоретически рассчитаны значения 458 °С и 214 атм. Плотность чистого Н2О2 равна 1,71 г/см3 в твёрдом состоянии, 1,47 г/см3 при 0 °С и 1,44 г/см3 при 25 °С. Жидкий пероксид водорода, подобно воде, сильно ассоциирована. Показатель преломления Н2О2 (1,41), а также её вязкость и поверхностное натяжение несколько выше, чем у воды (при той же температуре).

Структурная формула.

Структурная формула пероксида водорода Н-О -О-Н показывает, что два атома кислорода непосредственно соединены друг с другом. Связь это непрочна и обусловливает неустойчивость молекулы. Действительно, чистая Н2О2 способна разлагаться на воду и кислород со взрывом. В разбавленных водных растворах она значительно устойчивее.

Оптическими методами установлено, что молекула Н-О -О-Н не линейна: связи Н-О образуют углы около 95° со связью О-О. Крайними пространственными формами молекул подобного типа являются показанные ниже плоские структуры – цис-форма (обе связи Н-О по одну сторону от связи О-О) и транс-форма (связи Н-О по разные стороны).

Переход от одной из них к другой мог бы осуществляться путём поворота связи Н-О по оси связи О-О, но этому препятствует потенциальный барьер внутреннего вращения, обусловленный необходимостью промежуточного преодоления менее энергетически выгодных состояний (на 3,8 кДж/моль для транс-формы и на 15 кДж/моль для цис-формы). Практически круговое вращение связей Н-О в молекулах Н2О2 не осуществляется, а происходит только некоторые их колебания около наиболее устойчивого для данной молекулы промежуточного состояния – косой (” гош “) – формы.

Химические свойства.

Чем чище пероксид водорода, тем медленнее она разлагается при хранении. Особенно активными катализаторами разложения Н2О2 являются соединения некоторых металлов ( Сu , Fe , Mn и др.), причём заметно действуют даже такие их следы, которые не поддаются прямому аналитическому определению. Для связывания этил металлов к пероксиду водорода в качестве “стабилизатора” часто добавляют немного (порядка 1:10 000) пирофосфата натрия – Na4P2O7.

Сама по себе щелочная Среда не вызывает разложения пероксида водорода, но сильно способствует её каталитическому распаду. Напротив, кислотная среда этот распад затрудняет. Поэтому раствор Н2О2 часто подкисляют серной или фосфорной кислотой. Разложение пероксида водорода идёт быстрее при нагревании и на свету, поэтому хранить его следует в тёмном прохладном месте.

Подобно воде, пероксид водорода хорошо растворяет многие соли. С водой (также со спиртом) она смешивается в любых соотношениях. Разбавленный его раствор имеет неприятный “металлический” вкус. При действии на кожу крепких растворов получаются ожоги, причём обожженное место окрашивается в белый цвет.

Ниже сопоставлена растворимость некоторых солей в воде и пероксиде водорода при 0 °С (г на 100 г растворителя):

Н 2 О

Читайте также:
Фосфат кальция - формула, свойства, вред и его польза

Из приведённых примеров видно, что при переходе от Н2О к Н2О2 происходит не простое смещение растворимости в ту или иную сторону, а проявляется его сильная зависимость от химической природы солей.

Несмотря на большое сходство пероксида водорода с водой по составу и ряду свойств, смеси их замерзают при гораздо более низкой температуре, чем каждое вещество в отдельности. Существуют смеси замерзающие лишь ниже -50 °С. При таких условиях может образоваться очень нестойкое соединений состава Н2О2·2Н2О. Следует отметить, что содержащие более 50% Н2О2 водные растворы (равно как и безводный пероксид водорода) весьма склонны к переохлаждению. С эфиром пероксид водорода, подобно воде, смешивается лишь ограничено.

Пероксид водорода является сильным окислителем, т. е. легко отдаёт свой лишний (по сравнению с более устойчивым соединением – водой) атом кислорода. Так, при действии безводной и даже высококонцентрированной Н2О2 на бумагу, опилки и другие горючие вещества они воспламеняются. Практическое применение пероксида водорода основано главным образом на его окисляющем действии. Ежегодное мировое производство Н2О2 превышает 100 тыс. т.

Молекула пероксида водорода сильно полярна , что приводит к возникновению водородных связей между молекулами. Связь O—O непрочна, поэтому H2O2 — неустойчивое соединение, легко разлагается. Так же этому может поспособствовать присутствие ионов переходных металлов и серебра:

Характерный для пероксида водорода окислительный распад может быть схематически (в окислительно-восстановительных реакциях) изображён так:

Кислая среда более благоприятствует этому распаду, чем щелочная.

В реакции с нитритом калия соединение служит окислителем:

Значительно менее характерен для пероксида водорода восстановительный распад по схеме:

Щелочная среда более благоприятствует такому распаду, чем кислая.

При восстановлении Н2O2 образуется Н2O или ОН-, например :

При действии сильных окислителей H2O2 проявляет восстановительные свойства, выделяя свободный кислород:

Восстановительный распад пероксида водорода имеет место, например, в присутствии оксида серебра:

Аналогично, по существу, протекает его взаимодействие с озоном:

и с перманганатом калия в кислой среде:

Последняя реакция применяется для количественного определения пероксида водорода.

Пероксид водорода проявляет слабые кислотные свойства (К = 1,4×10−12), и поэтому диссоциирует по двум ступеням:

При её взаимодействии с гидроксидами некоторых металлов образуются соответствующие пероксиды, которые следует рассматривать как соли пероксида водорода. Так идёт реакция, например, с гидроксидом бария:

Соли пероксида водорода характеризуются наличием в молекулах пероксидной цепочки из двух атомов кислорода. У нормальных оксидов подобные цепочки не имеется. Например :

Na -O-O- Na и О =С=О.

В связи с этим отношение пероксидов и нормальных оксидов к кислотам различно – первые реагируют с образованием пероксида водорода, а вторые дают воду:

Путём изучения продуктов реакции с кислотами можно, таким образом, установить, является ли данное кислородное соединение пероксидом или оксидом.

Водородные атомы пероксида водорода могут быть замещены не только на металл, но и на некоторые радикалы кислотного характера. В последнем случае получаются кислоты, содержащие в составе молекулы пероксидную цепочку и называемые надкислотами . Они являются, следовательно, производными пероксида водорода (и подобно последней обладают сильными окислительными свойствами). Примером может служить надсерная кислота, схематическая формула которой:

Соли пероксида водорода являются наиболее обычными представителями пероксидов. Последние можно в общей формуле определить как химические соединения, содержащие непосредственно связанные друг с другом атомы кислорода. Обычные оксиды таких кислород-кислородных мостиков не содержат, чем принципиально и отличаются от пероксидов.

Сообщалось, что при взаимодействии Н2 и О2 с использованием электрического разряда удалось получить Н2О3. По данным инфракрасной спектроскопии, молекула имеет структуру О (ОН)2, причём связи О-О примерно на 5% длиннее и на 25% слабее, чем в Н2О2. При -60 °С разложение Н2О3 происходит за несколько часов на воду и кислород. В обычных условиях этот надпероксид совершенно неустойчив.

Более половины всего вырабатываемого пероксида водорода расходуется на отбелку различных материалов, проводимую обычно в очень разбавленных (0,1-1%) водных растворов Н2О2. Важное преимущество пероксида водорода перед другими окислителями заключается в “мягкости” действия, благодаря чему сам отбеливаемый материал почти не затрагивается, например, как отбеливатель на текстильном производстве и при изготовлении бумаги.

Очень концентрированные (80% и выше) водные растворы Н2О2 находят применение в качестве источников энергии и самостоятельно (с помощью катализаторов быстрого разложения Н2О2 из одного литра жидкого пероксида водорода можно получить около 5000 л нагретой до 700 °С смеси кислорода с водяным паром), и как окислитель реактивных топлив. Пероксид водорода применяется как окислитель в химических производствах, как исходное сырьё для получения пероксидных соединений, инициатор полимеризационных процессов, при изготовлении некоторых пористых изделий, для искусственного старения вин, крашения волос, вывода пятен и т. д.

Применяется как ракетное топливо — в качестве окислителя или как однокомпонентное (с разложением на катализаторе). Используется в аналитической химии, в медицине, в качестве пенообразователя при производстве пористых материалов, в производстве дезинфицирующих и отбеливающих средств. В промышленности пероксид водорода также находит свое применение в качестве катализатора, гидрирующего агента, как эпоксидирующий агент при эпоксидировании олефинов. В медицине растворы пероксида водорода применяются как антисептическое средство. При контакте с поврежденной кожей и слизистыми пероксид водорода под влиянием фермента каталазы распадается с выделением кислорода, что способствует сворачиванию крови и создает неблагоприятные условия для развития микроорганизмов. Однако такое действие непродолжительно и обладает слабым эффектом. Тем не менее, пероксид водорода (аптечное название — перекись водорода, 3 %) применяется при первичной обработке ран (в том числе открытых). Перекись водорода очень эффективна для лечения небольших царапин, особенно у детей — она не «щиплет», не имеет запаха, бесцветна. Однако она может вызывать небольшое жжение в районе открытой раны. В пищевой промышленности растворы пероксида водорода применяются для дезинфекции технологических поверхностей оборудования, непосредственно соприкасающихся с продукцией. Кроме того, на предприятиях по производству молочной продукции, соков, растворы перекиси водорода используются для дезинфекции упаковки (технология «Тетра Пак»). Для технических целей пероксид водорода применяют в производстве электронной техники.

Читайте также:
Этиленгликоль - определение, формула, виды, способы получения

Перекись водорода применяется также для обесцвечивания волос и отбеливания зубов, однако эффект в обоих случаях основан на окислении, а следовательно , разрушении тканей, и потому такое применение (особенно в отношении зубов) не рекомендуется специалистами.

Биологические свойства

Перекись водорода относится к реактивным формам кислорода и при повышенном образовании в клетке вызывает оксидативный стресс. Некоторые ферменты, например глюкозоксидаза , образуют в ходе окислительно-восстановительной реакции пероксид водорода, который может играть защитную роль в качестве бактерицидного агента. В клетках млекопитающих нет ферментов, которые бы восстанавливали кислород до перекиси водорода. Однако несколько ферментных систем ( ксантиноксидаза , НАД(Ф)H-оксидаза, циклоксигеназа и др.) продуцируют супероксид, который спонтанно или под действием супероксиддисмутазы превращается в перекись водорода.

Опасность применения

Несмотря на то, что пероксид водорода не токсичен, его концентрированные растворы при попадании на кожу, слизистые оболочки и в дыхательные пути вызывают ожоги. В больших концентрациях недостаточно чистый пероксид водорода может быть взрывоопасен. Опасен при приёме внутрь концентрированных растворов. Вызывает выраженные деструктивные изменения, сходные с действиями щелочей. Летальная доза 30%- го раствора пероксида водорода (пергидроля) — 50—100 мл.

Перекись водорода: помощь или вред?

Перекись водорода была впервые получена химиком Луисом Тенеро в 1818 году и уже очень скоро стала применяться в промышленности. Сейчас ее повсеместно используют в хозяйстве и быту.

1 Что такое перекись водорода: химическая формула и свойства

Перекись водорода это простейший представитель пероксидов. Он представляет собой прозрачную жидкость со своеобразным металлическим вкусом и слабым запахом, способную неограниченно растворяться в спирте, воде и эфире.

Химическая формула

Химическая формула перекиси водорода – Н2O2. Это означает, что она содержит 2 молекулы водорода и 2 молекулы кислорода.

Химические свойства

    Соединение может распадаться под влиянием некоторых факторов:
  • Нагревание;
  • Солнечный свет;
  • Взаимодействие с окислителями или восстановителями, щелочью.

При взаимодействии с определенными металлами, такими например, как Mn или Fe, происходит активная химическая реакция

Распад вещества быстрее происходит в щелочной среде, кислотная же среда наоборот замедляют процесс. Именно поэтому в раствор часто добавляют фосфорную кислоту. В термических условиях H2O2 быстро разлагается, поэтому не рекомендуется хранить его на свету.

Пероксид водорода хорошо смешивается с C2H5OH (спиртом) и H2O (водой) в любых пропорциях.

Перекись водорода и вода имеют схожий состав, однако температура замерзания гораздо ниже при их взаимодействии, чем если использовать их по отдельности. Смеси, содержащие от 45% пероксида водорода могут значительно переохлаждаться, так есть растворы, температура замерзания которых ниже -55℃.

H2O2– сильный окислитель, отдающий при реакции один атом кислорода. Воздействие крепкого раствора H2O2 на легковоспламеняющиеся вещества, такие как древесина, хлопок, бумага . происходит реакция горения.

Реакция распада перокисда водорода

Кислотная среда более подходящаая среда для распада. Щелочная же более подходит для восстановления

Пример реакции восстановления мы можем наблюдать при взаимодействии H2O2 с серебром

Аналогично, по существу, протекает его взаимодействие с озоном (О3 + Н2О2 = 2 Н2О + 2 О2) и с перманганатом калия в кислой среде:

Последняя реакция применяется для количественного определения пероксида водорода.

Перекись водорода – слабый окислитель, который взаимодействуя с гидроксидами определенных металлов образуют соли H2O2. Например, если рассматривать реакцию с гидроксидом бария:

2 Основные лечебные свойства

3 Способы применения

Уже многие годы перекись водорода используется в различных областях применения благодаря своей эффективности и доступности. Его применение основывается в первую очередь на его окисляющих свойствах.

В традиционной медицине

В косметологии

Препарат используется на коже, склонной к излишней жирности и появлению акне, черных точек, благодаря способности уничтожать возбудителей инфекции. Для этого 5 капель 3% раствора добавляют к 50 мл тоника. Косметологи советуют его наносить не более 2 раз в неделю.

Людям с веснушками и пигментными пятнами вещество также подойдет за счет его отбеливающего свойства. Чтобы провести процедуру, применяют специальные маски. Взять ст. л. 20% творога, сырой желток и 5 капель перекиси. Все ингредиенты перемешиваются до однородной структуры, а затем кисточкой наносятся на кожный покров. Слегка массируют, оставляя маску на 15 мин. По истечении времени масса смывается, а на лицо накладывают увлажняющий крем.

Читайте также:
Сложные эфиры - формула, свойства, способы получения

Применение в быту

Благодаря полезным свойствам Н2О2 можно не только устранить желтые пятна, разводы с белой материи и удалить налет на кафельной плитке, но и избавиться от грибка и плесени.

Чтобы почистить плитку в ванной комнате, взять 40 мл пероксида, ч. л. жидкого мыла и полстакана пищевой соды. Компоненты хорошо перемешать и нанести на влажную губку, которой оттереть проблемные участки. Если загрязнений много, нужно оставить массу на 10 минут, чтобы они растворились.

Для очистки материала берут 3% раствор, который вливают на пятна. Оставляют на 20-30 минут, а затем смывают с поверхности.

Перекись водорода в народной медицине

4 Польза или вред?

Если человек хорошо переносит пероксид и правильно им пользуется, он не должен вызвать каких-либо неблагоприятных последствий.

Попадание на человека крепкого раствора перекиси водорода оставляет на коже белые химические ожоги .

Нельзя употреблять вещество внутрь, это опасно появлением отравления. При полоскании рта иногда теряется чувствительность языка и могут гипертрофироваться его сосочки.

Также не стоит использовать при наличии у человека индивидуальной непереносимости. Это может повлечь за собой развитие аллергической реакции.

5 Форма выпуска и возможные противопоказания препарата

Изготавливается в виде 3% раствора для наружного местного нанесения.

Его крайне нежелательно использовать при следующих состояниях:

  • Кровотечения из вен или артерий;
  • Индивидуальная непереносимость;
  • Период беременности для обработки ротовой полости;
  • Детский возраст младше 12 лет.

6 Метод Неумывакина: что это?

Это лечение с успехом применяется в нетрадиционной медицине. Профессор Неумывакин считал перекись панецеей от всех заболеваний. Принцип действия он объяснял укрепляющим эффектом лекарства: при взаимодействии с кровью и ферментом каталазой оно распадается до воды и кислорода, который разжижает кровь, нормализует обменные процессы и улучшает деятельность органов и систем.

Если ожидаемый эффект не достигался, профессор считал, что организм чрезмерно зашлакован. Поэтому он рекомендовал проводить полную очистку.

Метод не признан официальной медициной, так как его противники утверждают, что перекись не только неэффективна, но и может причинить опасность при использовании не по назначению.

В нашей следующей статье мы поговорим об особенностях применения каустической соды.

Общие сведения о перекиси водорода и ее свойствах

Перекись водорода (Н2О2) — химическое соединение из группы, включающей пероксиды. Впервые вещество было получено Луи Тенаром в 1818 году путем подкисления раствора перекиси бария азотной кислотой. Это сильный окислитель во многих химических реакциях, таких как окисление ракетного топлива (80%), мощное дезинфицирующее и отбеливающее средство.

Перекись водорода классифицируется как одна из активных форм кислорода. Химическая формула агента состоит из двух атомов водорода и двух атомов кислорода. Благодаря этой структуре молекула под действием органических и неорганических веществ, тепла, света быстро разлагается с выделением атомарного кислорода. Дезинфицирующее действие самой перекиси водорода довольно слабое, но при распаде, оно проявляется быстро и эффективно благодаря свободным атомам кислорода.

  1. Химическая формула перекиси водорода, строение молекулы
  2. Физические свойства пероксида
  3. Химические свойства
  4. Водные растворы перекиси водорода и их применение

Химическая формула перекиси водорода, строение молекулы

Н-О-O-H-связи вокруг атомов кислорода в молекуле H2O2 расположены под углом (аналогично H-O-H-связям в воде), причем атомы H-O-O-H образуют двугранный угол (в твердой фазе около 90°).

Физические свойства пероксида

Чистый пероксид водорода сильно отличается от знакомого всем 3%раствора, который присутствует в каждой в домашней аптечке.

При комнатной температуре он является сиропообразной, бесцветной (концентрированная принимает бледно-голубой цвет), жидкостью с температурой замерзания -0,41 ° С и температурой кипения около 150 ° С. Вязкость у Н2О2 такая же, как и у чуть охлажденной (примерно до 13° С) воды.

Хорошо растворяется в полярных (органических) растворителях и до любой концентрации — в воде. Имеет металлический привкус. Молярная масса 34,01 г/моль.

Химические свойства

Пероксид обладает сильными окислительными свойствами, возникающими в результате образования атомарного кислорода:

Чистая перекись водорода без стабилизаторов — очень нестабильна и подвергается экзотермическому разложению, часто взрывчатому. Это происходит под воздействием воды, кислорода, под воздействием тепла, при контакте с некоторыми металлами (например, марганцем), оксидами металлов и ультрафиолетом.

2H2O2 → 2H2O + O2

Подобное разложение катализируется многими веществами, например, серебром и платиной, оксидом марганца, соединениями йода:

H2O2 + I → H2O + IO

H2O2 + IO → H2O + I+ O2

Эффективным ферментом, который расщепляет перекись водорода, является каталаза.

Благодаря тому, что пергидроль легко реагирует со многими металлами и разлагается при контакте со светом, его следует хранить в герметично закрытой таре, изготовленной из толстостенного полиэтилена или алюминия, не подвергаться воздействию дневного света и источников тепла. Его смесь с карбонатом гидрата натрия (Na2CO3 · 1,5H2O2) является относительно стабильной и безопасной в использовании.

Перекись водорода имеет слабые кислотные свойства. Слабее угольной кислоты. В водных растворах диссоциирует в соответствии с уравнением:

В присутствии восстановителей пероксид водорода ведет себя как окислитель (O-I → O-II), например :

Читайте также:
Фосфор - валентность, степень окисления, характеристика и строение

2 NH2OH + 6H2O2 → 2 HNO3 + 8H2O

В присутствии окислителей пероксид показывает восстановительные свойства (O-I → O0), например, в реакции с перманганатом калия в кислых условиях :

2KMnO4 + 5H2O2 + 3H2SO4 → 2MnSO4 + 5O2 + K2SO4 + 8H2O

или с солями серебра (I) в щелочной среде:

2AgNO3 + H2O2 + 2KOH → 2Ag + O2 + 2H2O + 2KNO3

Это агрессивное вещество для живых тканей. При контакте с кожей появляется белый цвет.

Получение — синтез пероксида водорода с использованием метода антрахинона.

В настоящее время hydrogen получают в промышленности методом антрахинона. путем окисления 2-этил-9,10-антрацендиола кислородным газом, прошедшим через раствор этого соединения в смеси подходящих растворителей. Перекись отделяют экстракцией воды и оставляют в растворе.

Этиллантрахинон регенерируют восстановлением газообразным водородом до 2-этил-9,10-антрацендиола, катализируемого палладием на подходящем носителе или соединениях никеля. В методах промышленного производства цикл обеих реакций (окисление и восстановление) осуществляется поочередно.

Разведенный водный раствор перекиси, полученный в этом процессе, концентрируют осторожным выпариванием воды при пониженном давлении, получая таким образом раствор с максимальной концентрацией 70%. Большая концентрация приводит к взрыву. Более концентрированные растворы и полностью чистый пероксид, может быть получен путем быстрого замораживания его из водного концентрированного раствора.

Интересные химические опыты с перекисью водорода — видео:

Водные растворы перекиси водорода и их применение

Перекись водорода в чистом виде не является коммерчески доступным веществом, поскольку законы большинства европейских стран и США запрещают его продажу по соображениям безопасности. В торговле (максимум 70% растворов) это соединение доступно после соблюдения особых условий (правила RID и ADR), а наиболее распространенной коммерческой формой является пергидроль 30% водный раствор и 3-5% растворы для домашнего использования, называемые перекисью водорода.

Перекись в растворе 3-3,5% используется для дезинфекции ран, и такие растворы для непосредственного использования доступны в аптеках. H2O2 оказывает особенно сильное разрушающее действие на анаэробные бактерии (анаэробы).

Дезинфекция раны с использованием перекиси водорода значительно снижает риск попадания бактерий в организм через поврежденный эпидермис. Быстрое уничтожение бактерий во время дезактивации также разрушает клетки крови, вытекающие из раны, а также часть клеток кожи, подвергнутых повреждению.

7-15% растворы обычно используются в качестве так называемых «Активных кислородных отбеливателей» в бытовой химии, 5% водный раствор используется для обесцвечивания волос. Очень разбавленные растворы (прибл. 1%) применяются в народной медицине для перорального применения. До сих пор считаются спорным способом лечения некоторых видов рака.

Пероксид водорода

Пероксид водорода
Общие
Систематическое наименование Пероксид водорода
Химическая формула H2O2
Физические свойства
Состояние (ст. усл.) жидкость
Отн. молек. масса 34,01 а. е. м.
Молярная масса 34,01 г/моль
Плотность 1.4 г/см³
Термические свойства
Температура плавления −0,432 °C
Температура кипения 150,2 °C
Энтальпия образования (ст. усл.) -136.11 кДж/моль
Химические свойства
pKa 11.65
Растворимость в воде неограниченная
Классификация
Рег. номер CAS 7722-84-1
SMILES OO
Регистрационный номер EC 231-765-0

Перокси́д водоро́да (перекись водорода), H2O2 — простейший представитель пероксидов. Бесцветная жидкость с «металлическим» вкусом, неограниченно растворимая в воде, спирте и эфире. Концентрированные водные растворы взрывоопасны. Пероксид водорода является хорошим растворителем. Из воды выделяется в виде неустойчивого кристаллогидрата H2O2•2H2O.

Молекула пероксида водорода имеет следующее строение:

Вследствие несимметричности молекула H2O2 сильно полярна (μ = 0,7·10 −29 Кл·м). Относительно высокая вязкость жидкого пероксида водорода обусловлена развитой системой водородных связей. Поскольку атомы кислорода имеют неподелённые электронные пары, молекула H2O2 также способна образовывать донорно-акцепторные связи.

Содержание

Химические свойства

Оба атома кислорода находятся в промежуточной степени окисления −1, что и обуславливает способность пероксидов выступать как в роли окислителей, так и восстановителей. Наиболее характерны для них окислительные свойства:

При взаимодействии с сильными окислителями пероксид водорода выступает в роли восстановителя, окисляясь до кислорода:

Молекула пероксида водорода сильно полярна, что приводит к возникновению водородных связей между молекулами. Связь O—O непрочна, поэтому H2O2 — неустойчивое соединение, легко разлагается. Так же этому может поспособствовать присутствие ионов переходных металлов. В разбавленных растворах пероксид водорода тоже не устойчив и самопроизвольно диспропорционирует на H2O и O2.Реакция диспропорционирования катализируется ионами переходных металлов, некоторыми белками:

Однако очень чистый пероксид водорода устойчив.

Пероксид водорода проявляет слабые кислотные свойства (К = 1,4·10 −12 ), и поэтому диссоциирует по двум ступеням:

При действии концентрированного раствора Н2O2 на некоторые гидроксиды в ряде случаев можно выделить пероксиды металлов, которые можно рассматривать как соли пероксида водорода (Li2O2, MgO2 и др.):

Пероксид водорода может проявлять как окислительные, так и восстановительные свойства. Например, при взаимодействии с оксидом серебра он является восстановителем:

В реакции с нитритом калия соединение служит окислителем:

Пероксидная группа [—O—O—] входит в состав многих веществ. Такие вещества называют пероксидами, или пероксидными соединениями. К ним относятся пероксиды металлов (Na2O2, BaO2 и др.). Кислоты, содержащие пероксидную группу, называют пероксокислотами, например, пероксомонофосфорная H3PO5 и пероксидисерная H2S2O8 кислоты.

Окислительно-восстановительные свойства

Пероксид водорода обладает окислительными, а также восстановительными свойствами. Он окисляет нитриты в нитраты, выделяет иод из иодидов металлов, расщепляет ненасыщенные соединения по месту двойных связей. Пероксид водорода восстанавливает соли золота и серебра, а также кислород при реакции с водным раствором перманганата калия в кислой среде.

Читайте также:
Алкины - определение, формула, свойства, получение и применение

При восстановлении Н2O2 образуется Н2O или ОН-, например:

При действии сильных окислителей H2O2 проявляет восстановительные свойства, выделяя свободный кислород:

Реакцию KMnO4 с Н2O2 используют в химическом анализе для определения содержания Н2O2:

Окисление органических соединений пероксидом водорода (например, сульфидов и тиолов) целесообразно проводить в среде уксусной кислоты.

Биологические свойства

Перекись водорода относится к реактивным формам кислорода и при повышенном образовании в клетке вызывает оксидативный стресс. Некоторые ферменты, например глюкозоксидаза, образуют в ходе окислительно-восстановительной реакции пероксид водорода, который может играть защитную роль в качестве бактерицидного агента. В клетках млекопитающих нет ферментов, которые бы восстанавливали кислород до перекиси водорода. Однако, несколько ферментных систем (ксантиноксидаза, НАД(Ф)H-оксидаза, циклоксигеназа и др.) продуцируют супероксид, который спонтанно или под действием супероксиддисмутазы превращается в перекись водорода.

Получение

Пероксид водорода получают в промышленности при реакции с участием органических веществ, в частности, каталитическим окислением изопропилового спирта:

Ценным побочным продуктом этой реакции является ацетон.

В промышленных масштабах пероксид водорода получают электролизом серной кислоты, в ходе которого образуется надсерная кислота, и последующим разложением последней до пероксида и серной кислоты.

В лабораторных условиях для получения пероксида водорода используют реакцию:

Концентрирование и очистку пероксида водорода проводят осторожной перегонкой.

Применение

Благодаря своим сильным окислительным свойствам пероксид водорода нашёл широкое применение в быту и в промышленности, где используется, например, как отбеливатель на текстильном производстве и при изготовлении бумаги. Применяется как ракетное топливо — в качестве окислителя или как однокомпонентное (с разложением на катализаторе). Используется в аналитической химии, в качестве пенообразователя при производстве пористых материалов, в производстве дезинфицирующих и отбеливающих средств. В промышленности пероксид водорода также находит свое применение в качестве катализатора, гидрирующего агента, как эпоксидирующий агент при эпоксидировании олефинов.

Хотя разбавленные растворы перекиси водорода применяется для небольших поверхностных ран, исследования показали что этот метод обеспечивая антисептический эффект и очищение и удлиняет время заживления. [1] [2] Обладая хорошими очищающими свойствами, перекись водорода на самом деле не ускоряет заживление ран. Достаточно высокие концентрации, обеспечивающие антисептический эффект, могут также удлинять время заживления из-за повреждения прилегающих к ране клеток. [3] Более того, перекись водорода может мешать заживлению и способствовать образованию рубцов из-за разрушения новообразующихся клеток кожи. [4] Однако, в качестве средства для очистки глубоких ран сложного профиля, гнойных затеков, флегмон, и других гнойных ран санация которых затруднена, перикись водорода остается препаратом выбора. Так как она обладает не только антисептическим эффектом, но и продуцирует большое количество пены, при взаимодействии с ферментом пероксидазой. Что в свою очередь позволяет размягчить и отделить от тканей некротизированные участки, сгустки крови, гноя, которые буду легко смыты последующим введением в полость раны антисептического раствора. Без предварительной обработки перекисью водорода, антисептический раствор не сможет удалить данные патологические образования, что приведет значительному увеличению времени заживления раны, и ухудшит состояние больного.

Перекись водорода применяется также для обесцвечивания волос [5] и отбеливания зубов [6] , однако эффект в обоих случаях основан на окислении, а следовательно, разрушении тканей, и потому такое применение (особенно в отношении зубов) не рекомендуется специалистами.

В пищевой промышленности растворы пероксида водорода применяются для дезинфекции технологических поверхностей оборудования, непосредственно соприкасающихся с продукцией. Кроме того, на предприятиях по производству молочной продукции, соков, растворы перекиси водорода используются для дезинфекции упаковки (технология «Тетра Пак»). Для технических целей пероксид водорода применяют в производстве электронной техники.

В быту применяется также для выведения пятен MnO2, получившихся при взаимодействии перманганата калия «марганцовки» с предметами (ввиду его окислительных свойств).

Пероксид водорода в аквариумистике

3%-ный раствор пероксида водорода используется в аквариумистике для оживления задохнувшейся рыбы, а также для очистки аквариумов и борьбы с нежелательной флорой и фауной в аквариуме (гидры, планарии, паразиты, водоросли, бактерии и др.)

Формы выпуска

Выпускается в виде водных растворов, стандартная концентрация 1-6 %, 30, 38, 50, 60, 85, 90 и 98 %. 30 % водный раствор пероксида водорода, стабилизированный добавлением фосфатов натрия, называется пергидролем.

Опасность применения

Несмотря на то, что пероксид водорода не токсичен, его концентрированные растворы при попадании на кожу, слизистые оболочки и в дыхательные пути вызывают ожоги. В больших концентрациях недостаточно чистый пероксид водорода может быть взрывоопасен. Опасен при приёме внутрь концентрированных растворов. Вызывает выраженные деструктивные изменения, сходные с действиями щелочей. Летальная доза 30%-го раствора пероксида водорода (пергидроля) — 50—100 мл. [7]

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: