Ядерное оружие – поражающие факторы, виды взрывов, история

2. Ядерное оружие. История создания. Поражающие факторы.

Ядерное оружие – оружие массового поражения взрывного действия, основанное на использовании энергии деления тяжелых ядер некоторых изотопов урана и плутония, или при термоядерных реакциях синтеза легких ядер изотопов водорода дейтерия и трития, в более тяжелые, например, ядра изотопов гелия.

Ядерными зарядами могут быть снабжены боевые части ракет и торпед, авиационные и глубинные бомбы, артиллерийские снаряды и мины. По мощности различают ядерные боеприпасы сверхмалые (менее 1 кт), малые (1-10 кт), средние (10-100 кт), крупные (100-1000 кт) и сверхкрупные (более 1000 кт). В зависимости от решаемых задач возможно применение ядерного оружия в виде подземного, наземного, воздушного, подводного и надводного взрывов. Особенности поражающего действия ядерного оружия на население определяются не только мощностью боеприпаса и видом взрыва, но и типом ядерного устройства. В зависимости от заряда различают: атомное оружие, в основе которого лежит реакция деления; термоядерное оружие – при использовании реакции синтеза; комбинированные заряды; нейтронное оружие.

Единственным встречающимся в природе в заметных количествах делящимся веществом является изотоп урана с массой ядра 235 атомных единиц массы (уран-235). Содержание этого изотопа в природном уране составляет всего 0.7%. Оставшаяся часть приходится на уран-238. Поскольку химические свойства изотопов абсолютно одинаковы, для выделения урана-235 из природного урана необходимо осуществление достаточно сложного процесса разделения изотопов. В результате может быть получен высокообогащенный уран, содержащий около 94% урана-235, который пригоден для использования в ядерном оружии.

Делящиеся вещества могут быть получены искусственно, причем наименее сложным с практической точки зрения является получение плутония-239, образующегося в результате захвата нейтрона ядром урана-238 (и последующей цепочки радиоактивных распадов промежуточных ядер). Подобный процесс можно осуществить в ядерном реакторе, работающем на природном или слабообогащенном уране. В дальнейшем, плутоний может быть выделен из отработавшего топлива реактора в процессе химической переработки топлива, что заметно проще осуществляемого при получении оружейного урана процесса разделения изотопов.

Для создания ядерных взрывных устройств могут быть использованы и другие делящиеся вещества, например уран-233, получаемый при облучении в ядерном реакторе тория-232. Однако практическое применение нашли только уран-235 и плутоний-239, прежде всего из-за относительной простоты получения этих материалов.

Возможность практического использования выделяющейся при делении ядер энергии обусловлена тем, что реакция деления может иметь цепной, самоподдерживающийся характер. В каждом акте деления образуется примерно два вторичных нейтрона, которые, будучи захвачены ядрами делящегося вещества, могут вызвать их деление, в свою очередь приводящее к образованию еще большего количества нейтронов. При создании специальных условий количество нейтронов, а следовательно и актов деления, растет от поколения к поколению.

Взрыв первого ядерного взрывного устройства был произведен США 16 июля 1945 г. в Аламогордо, штат Нью – Мексико. Устройство представляло собой плутониевую бомбу, в которой для создания критичности был использован направленный взрыв. Мощность взрыва составила около 20 кт. В СССР взрыв первого ядерного взрывного устройства, аналогичного американскому, был произведен 29 августа 1949 г.

История создания ядерного оружия.

В начале 1939 года французский физик Фредерик Жолио-Кюри сделал вывод, что возможна цепная реакция, которая приведет к взрыву чудовищной разрушительной силы и что уран может стать источником энергии как обычное взрывчатое вещество. Это заключение стало толчком для разработок по созданию ядерного оружия. Европа была накануне второй мировой войны, и потенциальное обладание таким мощным оружием давало любому его обладателю огромные преимущества. Над созданием атомного оружия трудились физики Германии, Англии, США, Японии.

В начале 1939 года французский физик Фредерик Жолио-Кюри сделал вывод, что возможна цепная реакция, которая приведет к взрыву чудовищной разрушительной силы и что уран может стать источником энергии как обычное взрывчатое вещество. Это заключение стало толчком для разработок по созданию ядерного оружия. Европа была накануне второй мировой войны, и потенциальное обладание таким мощным оружием давало любому его обладателю огромные преимущества. Над созданием атомного оружия трудились физики Германии, Англии, США, Японии.

К лету 1945 года американцам удалось собрать две атомные бомбы, получившие названия “Малыш” и “Толстяк”. Первая бомба весила 2722 кг и была снаряжена обогащенным Ураном-235.

Бомба “Толстяк” с зарядом из Плутония-239 мощностью более 20 кт имела массу 3175 кг.

Президент США Г. Трумэн стал первым политическим руководителем, кто принял решение на применение ядерных бомб. Первыми целями для ядерных ударов были выбраны японские города (Хиросима, Нагасаки, Кокура, Ниигата). С военной точки зрения необходимости таких бомбардировок густонаселенных японских городов не было.

Утром 6 августа 1945 г. над Хиросимой было ясное, безоблачное небо. Как и прежде, приближение с востока двух американских самолетов(один из них назывался Энола Гей) на высоте 10-13 км не вызвало тревоги (т.к. каждый день они показывались в небе Хиросимы). Один из самолетов спикировал и что-то сбросил, а затем оба самолета повернули и улетели. Сброшенный предмет на парашюте медленно спускался и вдруг на высоте 600 м над землей взорвался. Это была бомба “Малыш”. 9 августа еще одна бомба была сброшена над городом Нагасаки.

Общие людские потери и масштабы разрушений от этих бомбардировок характеризуются следующими цифрами: мгновенно погибло от теплового излучения (температура около 5000 градусов С) и ударной волны – 300 тысяч человек, еще 200 тысяч получили ранения, ожоги, лучевую болезнь. На площади 12 кв. км были полностью разрушены все строения. Только в одной Хиросиме из 90 тысяч строений было уничтожено 62 тысячи.

После американских атомных бомбежек по распоряжению Сталина 20 августа 1945 года был образован специальный комитет по атомной энергии под руководством Л. Берия. В комитет вошли видные ученые А.Ф. Иоффе, П.Л. Капица и И.В. Курчатов. Большую услугу советским атомщикам оказал коммунист по убеждениям, ученый Клаус Фукс – видный работник американского ядерного центра в Лос-Аламосе. Он в течение 1945 -1947 годов четыре раза передавал сведения по практическим и теоретическим вопросам создания атомной и водородных бомб, чем ускорил их появление в СССР.

В 1946 – 1948 годах в СССР была создана атомная промышленность. В районе г. Семипалатинска был построен испытательный полигон. В августе 1949 года там было подорвано первое советское ядерное устройство. Перед этим президенту США Г. Трумэну доложили, что Советский Союз овладел секретом ядерного оружия, но ядерную бомбу Советский Союз создаст не ранее 1953 года. Это сообщение вызвало у правящих кругов США желание как можно быстрее развязать превентивную войну. Был разработан план “Тройан”, в котором предусматривалось начать боевые действия в начале 1950 года. На то время США располагало 840 стратегическими бомбардировщиками и свыше 300 атомными бомбами.

Поражающими факторами ядерного взрыва являются: ударная волна, световое излучение, проникающая радиация, радиоактивное заражение и электромагнитный импульс.

Ударная волна. Основной поражающий фактор ядерного взрыва. На нее расходуется около 60% энергии ядерного взрыва. Она представляет собой область резкого сжатия воздуха, распространяющуюся во все стороны от места взрыва. Поражающее действие ударной волны характеризуется величиной избыточного давления. Избыточное давление – это разность между максимальным давлением во фронте ударной волны и нормальным атмосферным давлением перед ним. Оно измеряется в кило паскалях – 1 кПа =0,01 кгс/см2.

Читайте также:
Первая мировая война 1914-1918 - причины, события, итоги и карта

При избыточном давлении 20-40 кПа незащищенные люди могут получить легкие поражения. Воздействие ударной волны с избыточным давлением 40-60 кПа приводит к поражениям средней тяжести. Тяжелые травмы возникают при избыточном давлении свыше 60 кПа и характеризуются сильными контузиями всего организма, переломами конечностей, разрывами внутренних паренхиматозных органов. Крайне тяжелые поражения, нередко со смертельным исходом, наблюдаются при избыточном давлении свыше 100 кПа.

Световое излучение – это поток лучистой энергии, включающий видимые ультрафиолетовые и инфракрасные лучи.

Его источник – светящаяся область, образуемая раскаленными продуктами взрыва. Световое излучение распространяется практически мгновенно и длится в зависимости от мощности ядерного взрыва до 20 с. Сила его такова, что, несмотря на кратковременность, оно способно вызывать пожары, глубокие ожоги кожи и поражение органов зрения у людей.

Световое излучение не проникает через непрозрачные материалы, поэтому любая преграда, способная создать тень, защищает от прямого действия светового излучения и исключает ожоги.

Значительно ослабляется световое излучение в запыленном (задымленном) воздухе, в туман, дождь.

Проникающая радиация.

Это поток гамма-излучения и нейтронов. Воздействие длится 10-15 с. Первичное действие радиации реализуется в физических, физико-хи­мических и химических процессах с образованием химически активных сво­бодных радикалов (Н, ОН, НО2) обладающих высокими окислительными и восстановительными свойствами. В последующем образуются различные перекисные соединения, угнетающие активность одних ферментов и повы­шающие – других, играющих важную роль в процессах аутолиза (самораство­рения) тканей организма. Появление в крови продуктов распада радиочув­ствительных тканей и патологического обмена веществ при воздействии вы­соких доз ионизирующего излучения является основой формирования токсемии – отравления организма, связанного с циркуляцией в крови токси­нов. Основное значение в развитии радиационных поражений имеют нару­шения физиологической регенерации клеток и тканей, а также изменения функций регуляторных систем.

Радиоактивное заражение местности

Основными её источниками являются продукты деления ядерного заряда и радиоактивные изотопы, образующиеся в результате приобретения радиоактивных свойств элементами из которых изготовлен ядерный боеприпас и входящих в состав грунта. Из них образуется радиоактивное облако. Оно поднимается на многокилометровую высоту, и с воздушными массами переносится на значительные расстояния. Радиоактивные частицы, выпадая из облака на землю, образуют зону радиоактивного заражения (след), длина которой может достигать нескольких сот километров. Наибольшую опасность радиоактивные вещества представляют в первые часы после выпадения, так как их активность в этот период наивысшая.

Электромагнитный импульс.

Это кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма-излучения и нейтронов, испускаемых при ядерном взрыве, с атомами окружающей среды. Следствием его воздействия является перегорание или пробои отдельных элементов радиоэлектронной и электротехнической аппаратуры. Поражение людей возможно только в тех случаях, когда они в момент взрыва соприкасаются с проводными линиями.

Разновидностью ядерного оружия является нейтронное и термоядерное оружие.

Нейтронное оружие, представляет собой малогабаритный термоядер­ный боеприпас мощностью до 10 кт, предназначенный в основном для пора­жения живой силы противника за счет действия нейтронного излучения. Ней­тронное оружие относится к тактическому ядерному оружию.

Ядерное оружие, определение, классификация. Виды ядерных взрывов. История применения ядерного оружия. Поражающие факторы ядерного взрыва. Характеристика санитарных потерь

Ядерным оружием называется оружие, поражающее действие которого основано на использовании внутриядерной энергии, выделяющейся при ядерном взрыве.

Ядерное оружие основано на использовании внутриядерной энергии, выделяющейся при цепных реакциях деления тяжелых ядер изотопов урана-235, плутония-239 или при термоядерных реакциях синтеза легких ядер – изотопов водорода (дейтерия и трития) в более тяжелые.

Это оружие включает различные ядерные боеприпасы (боевые головные части ракет и торпед, авиационные и глубинные бомбы, артиллерийские снаряды и мины), снаряжен-ные ядерными зарядными устройствами, средства управления ими и доставки их к цели.

Основной частью ядерного боеприпаса является ядерный заряд, содержащий ядерное взрывча-тое вещество (ЯВВ) – уран-235 или плутоний-239.

Цепная ядерная реакция может развиваться только при наличии критической мас-сы делящегося вещества.

Ядерные боеприпасы всех типов в зависимо-сти от мощности подразделяются на следую-щие виды:

1) сверхмалые (менее 1 тыс. т);

2) малые (1–10 тыс. т);

3) средние (10–100 тыс. т);

4) крупные (100 тыс.–1 млн т);

5) сверхкрупные (более 1 млн т).

В зависимости от задач, решаемых с приме-нением ядерного оружия, ядерные взрывы подразделяют на следующие виды:

3) наземные (надводные);

4) подземные (подводные).

Ядерные взрывы разделяют на следующие виды:

Высотным взрывом называется взрыв выше границы тропосферы. В зависимости от географической широты местности высота границы тропосферы изменяется от 8 до 18 км. Наименьшая высота высотного взрыва условно принимается равной 10 км.

Воздушным взрывом называется взрыв в воздухе на такой высоте, когда светящаяся область не касается поверхности земли (воды). Воздушные взрывы подразделяются на низкие и высокие.

Наземным (надводным) взрывом называется взрыв на поверхности земли или воды (кон-тактный взрыв) или же в воздухе. При назем-ном (надводном) взрыве светящаяся область касается поверхности земли (воды).

Подземным (подводным) взрывом называется взрыв, произведенный под землей (под водой).

Манхэттенский проект начал своё осуществле-ние 17 сентября1943 года. К нему было привлечено множество выдающихся учёных-физиков, многие из которых являлись бежен-цами из Европы.

К лету 1945 американцам удалось построить 3 атомные бомбы, 2 из которых были сброше-ны на Хиросиму и Нагасаки, а тре-тью испытали незадолго до этого. Конструкция Хиросимовского «Малыша», урановой ядерной бомбы, была проста и надёжна (хотя и мало-эффективна), и американские учёные не сомне-вались в её успехе. Плутониевый «Толстяк» же имел более сложную, но и более эффективную конструкцию, и нуждался в проверке. Так 16 июля 1945 года в Нью-Мексико было проведе-но первое в мире испытание атомной бомбы, получившее название Тринити (Троица).

Основными поражающими факторами ядер-ного взрыва являются:

1) ударная волна – 50% энергии взрыва;

2) световое излучение – 30–35% энергии взрыва;

3) проникающая радиация – 8–10% энергии взрыва;

4) радиоактивное заражение – 3–5% энергии взрыва;

5) электромагнитный импульс – 0,5–1% энергии взрыва.

Ударная волна ядерного взрыва – один из основных поражающих факторов. В зависимо-сти от того, в какой среде возникает и распро-страняется ударная волна – в воздухе, воде или грунте, ее называют соответственно воздушной волной, ударной волной в воде и сейсмо-взрывной волной (в грунте).

На структуру санитарных потерь влияет прежде всего мощность взрыва. По мере возрастания мощности взрыва радиусы поражений ударной волной и световым излучением увеличиваются в значительно меньшей степени, чем радиус поражений проникающей радиацией, поэтому и структура санитарных потерь изменяется: ведущее место занимают термические ожоги и травмы.

Структура санитарных потерь неодинакова также при взрывах, произведенных на различ-ной высоте (воздушном, наземном). При воздушном взрыве при прочих равных услови-ях более значителен процент ожогов, а при наземном – травматических повреждений.

Основные принципы и нормативно-правовая база защиты населения от ЧС. Единая государственная система предупреждения и ликвидации ЧС (РСЧС): определение, роль и место в общей системе национальной безопасности РФ, организационная структура, силы и средства, режимы функционирования.

Читайте также:
Книгопечатание на Руси - создание и издание первой русской печатной книги

Основные принципы зашиты от ЧС в РФ:

•защита от ЧС подлежит все население РФ, а также иностранные граждане и лица без гражданства, находящиеся на территории страны;

•подготовка и реализация мероприятий по защите от ЧС осуществляется с учетом разделения предметов ведения и полномочий между федеральными органами исполнительной власти, органами исполнительной власти субъектов РФ и органами местного самоуправления;

•при возникновении ЧС обеспечивается приоритетность задач по спасению жизни и сохранения здоровья людей;

•мероприятия по защите населения и территорий от ЧС планируются и осуществляются в строгом соответствии с международными договорами и соглашениями РФ, Конституцией РФ, федеральными законами и другими нормативными правовыми актами;

•основной объем мероприятий, направленных на предупреждение ЧС, а также на максимально возможное снижение размеров ущерба и потерь в случае их возникновения, проводится заблаговременно

•планирование и осуществление мероприятий по защите населения и территорий от ЧС проводится с учетом экономических, природных и иных характеристик, особенностей территорий и степени реальной опасности возникновения ЧС;

•объем и содержание мероприятий по защите населения и территорий от ЧС определяются, исходя из принципа необходимой достаточности и максимально возможного использования имеющихся сил и средств;

•ликвидация ЧС осуществляется силами и средствами организаций, органов местного самоуправления, органов исполнительной власти субъектов РФ, на территории которых сложилась ЧС. При недостаточности сил и средств привлекаются силы и средства федеральных органов исполнительной власти, а при необходимости силы и средства других субъектов РФ.

Общие для Российской Федерации организационно-правовые нор­мы в области защиты населения, а также всего земельного, водного, воздушного пространства, объектов производственного и социального назначения, окружающей природной среды от ЧС определяет Федеральный закон «О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера».

Защита населения в ЧС мирного времени осуществляется в рамках Единой государственной системы предупреждения и ликвидации чрезвычайных ситуаций (РСЧС). РСЧС действует в соответствии с «Положением о единой государственной системе предупреждения и ликвидации чрезвычайных ситуаций» утверждена Постановлением Правительства РФ № 794 от 30 декабря 2003 г.

Она объединяет органы управления, силы и средства органов исполнительной власти и организаций.

Основной целью создания РСЧС является объединение усилий в деле предупреждения и ликвидации ЧС органов федеральной власти, органов территориального управления,

местного самоуправления и объектов производственного и социального назначения, а также сил и средств различной ведомственной принадлежности.

РСЧС реализует три функции:

1. предотвращение возникновения ЧС;

2. снижение потерь и ущерба от ЧС;

3. ликвидация последствий ЧС.

Задачи РСЧС:

1. разработка и реализация правовых и экономических норм, связанных с обеспечением защиты населения и территорий от чрезвычайных ситуаций

2. осуществление целевых и научно-технических программ, направленных на предупреждение ЧС и повышение устойчивости функционирования предприятий, учреждений и организаций независимо от их организационно-правовых форм

3. обеспечение готовности к действиям органов управления, сил и средств, предназначенных и выделяемых для предотвращения и ликвидации ЧС

4. сбор и обработка информации в области защиты населения и территорий от ЧС

5. подготовка населения к действиям при ЧС

6. прогнозирование и оценка социально-экономических последствий ЧС

7. создание резервов финансовых и материальных ресурсов для ликвидации ЧС

8. осуществление гос. Экспертизы, надзора и контроля в области защиты населения и территорий от ЧС

9. ликвидация ЧС

10. осуществление мероприятий по социальной защите населения, пострадавшего от ЧС

11. международное сотрудничество в области защиты населения и территорий от ЧС. Организационная структура РСЧСсостоит из территориальных и функциональных подсистем и имеет пять уровней:

1. Федеральный, охватывающий всю территорию РФ;

2. Межрегиональный, территорию нескольких субъектов РФ;

3. Региональный, территорию субъекта РФ;

4. Муниципальный, территорию муниципального образования;

5. Объектовый, территорию объекта производственного или социального назначения.

Силыликвидации чрезвычайных ситуаций включают в себя:

1. Войска гражданской обороны;

2. Поисково-спасательную службу МЧС России;

3. Государственную противопожарную службу МЧС России;

4. Соединения и воинские части Вооруженных Сил, предназначенные для ликвидации последствий катастроф;

5.Противопожарные, аварийно-спасательные, аварийно-восстановительные формирования министерств, ведомств и организаций;

6. Учреждения и формирования служб экстренной медицинской помощи и другие. Силы и средства РСЧС подразделяются:

1. на силы и средства наблюдения и контроля включают:

· подразделения органов надзора (за состоянием котлов, мостов, АЭС, газовыми и электрическими сетями и др.);

· контрольно-инспекционную службу (Минэкологии);

· службы и учреждения ведомств, осуществляющих наблюдение за состоянием природной среды, за потенциально опасными объектами;

· сеть наблюдения и лабораторного контроля ГО;

· лабораторный контроль за качеством продуктов питания и пищевого сырья;

· службу предупреждения о стихийных бедствиях.

2. силы и средства ликвидации чрезвычайных ситуаций. В них входят в первую очередь соединения, части и подразделения МЧС, МО, МВД, невоенизированные формирования ГО, а также силы и средства, принадлежащие другим министерствам и ведомствам, государственным и иным органам, расположенным на территории России.

Основу этих сил составляют войска ГО, подразделения поисково-спасательной службы и формирования постоянной готовности МЧС.

Режимы РСЧС.

При отсутствии угрозы возникновения чрезвычайных ситуаций на объектах, территориях или акваториях органы управления и силы РСЧС функционируют в режиме повседневной деятельности.

При угрозе возникновения чрезвычайной ситуации для них вводится режим повышенной готовности,

При возникновении и ликвидации чрезвычайной ситуации – режим чрезвычайной ситуации.

Чрезвычайная ситуация (определение). Источники ЧС. Классификация ЧС (по причинам возникновения, поражающему фактору, по масштабу, по количеству пострадавших). Поражающие факторы ЧС. Фазы развития ЧС.

ЧС – это обстановка на определенной территории (акватории) или объекте, сложившаяся в результате аварии, катастрофы, опасного природного явления, стихийного или иного бедствия, эпидемии, эпизоотии, применения современных средств поражения, которые могут повлечь или повлекли за собой:

– ущерб здоровью людей,

– ущерб окружающей природной среде,

– значительные материальные потери,

– нарушение условий жизнедеятельности людей.

Классификация.

3. По поражающему фактору:

-метеорологические — ураганы, смерчи, циклоны (тайфуны), бураны, морозы, необычайная жара, засуха и др.;

-топологические — наводнения, цунами, снежные обвалы, оползни, сели;

-тектонические — землетрясения, извержения вулканов и др.;

· Антропогенные: аварии, катастрофы (выход из строя технических сооружений (плотин, тоннелей, зданий, шахт), кораблекрушения, крушения поездов, загрязнения воды в системах водоснабжения и водоемах и др).

4. По причинам возникновения ЧС подразделяют на:

1) 1.Биолого-социальные (инфекционная заболеваемость людей, инфекционная заболеваемость с/х животных, поражения с/х растений болезнями и вредителями, голод, терроризм);

2) Военные (военные конфликты, войны);

3) 3. Природные (землетрясения, наводнения, ураганы, цунами, оползни и др.);

4) 4. Техногенные (радиационные, химические, биологические аварии; пожары и взрывы; обрушение сооружений; аварии на очистных сооружениях; затопление, крушение (аварии транспортных средств);

5) Экологические (в атмосфере, биосфере, гидросфере и литосфере).

5. По масштабу и количеству пострадавших:

– Локальная (пострадавших до 10, зона загрязнения в пределах территории объекта);

– Местная (пострадавших 10-50, зона загрязнения в пределах населенного пункта, города, района);

Читайте также:
Первые автомобили в мире - кто был создателем, в каком году, в какой стране появился

– Территориальная (пострадавших 50-500, зона загрязнения в пределах субъекта федерации);

– Региональная (пострадавших 50-500, зона загрязнения в пределах 2 субъектов федерации);

– Федеральная (пострадавших более 500, зона загрязнения более 2 субъектов федерации);

– Трансрегиональная (в стране) (любое количество пострадавших, зона загрязнения выходит за пределы страны);

– Трансрегиональная (за рубежом) ( любое количество пострадавших, зона загрязнении затрагивает территории страны).

Поражающие факторы источников ЧС – это факторы:

1. Ударная волна – возникает, например, при взрывах (взрывы котлов, газопродуктопроводов, опасных грузов), а также при воздействии сейсмических волн при землетрясении.

2. Ионизирующее излучение. Возникновение этого поражающего фактора возможно при авариях на АЭС, взрывах ядерных боеприпасов, при нарушении технологических процессов на производстве и техники безопасности при работе с источниками ионизирующего излучения. При этом возможно облучение людей в момент возникновения ЧС и при заражении радиоактивными веществами (РВ) окружающей среды, при выбросе их в атмосферу.

3. Так, при аварии на Чернобыльской АЭС имело место непосредственное облучение от источников излучения персонала и спасательных формирований в момент аварии и ее ликвидации. Кроме того, значительная часть Беларуси, Украины, часть Российской Федерации подверглись заражению РВ. И сегодня продолжается их вредное воздействие на человека, животных и растительный мир.

4. Заражение окружающей среды сильнодействующими ядовитыми и боевыми отравляющими веществами (СДЯВ).Это может иметь место при авариях на производстве, железнодорожном транспорте, при ведении боевых действий, а также в быту.

5. Аэрогидродинамический фактор. Как правило, этот поражающий фактор возникает при таких стихийных бедствиях, как наводнения, тайфуны и ураганы, смерчи, обвалы, оползни, снежные лавины, ливни и т. п. В отдельных случаях (разрушение плотин, аварии на гидроэлектростанциях) этот фактор может иметь техногенное происхождение.

6. Температурный фактор – воздействие высоких и низких температур, возникающих в отдельных экстремальных ситуациях (пожары на производстве, воздействие светового излучения, снежные завалы, катастрофы на море и ряд других критических ситуаций).

7. Заражение окружающей среды бактериальными средствами. Возникновение этого фактора возможно при грубых нарушениях санитарно-гигиенических правил эксплуатации объектов водоснабжения и канализации, режима работы отдельных учреждений, нарушении технологии в работе предприятий пищевой промышленности и в ряде других случаев.

8. Психоэмоциональное воздействие. На людей, находящихся в экстремальных условиях, наряду с другими поражающими факторами действуют и психотравмирующие обстоятельства, что может привести к нарушению психической деятельности, снижению работоспособности. Необходимо подчеркнуть, что психогенное воздействие экстремальных условий складьшается не только из прямой угрозы жизни человека, но и опосредованной, т.е. связанной с ожиданием ее реализации.

Фазы ЧС.

1.Зарождения– возникновение условий или предпосылок для чрезвычайной ситуация (усиление природной активности, накопление деформаций, дефектов и т.п.). Установить

момент начала стадии зарождения трудно. При этом возможно использование статистики конструкторских отказов и сбоев, анализируются данные сейсмических наблюдений, метеорологические оценки и т.п.

2.Инициирования– начало чрезвычайной ситуации. На этой стадии важен человеческий фактор, поскольку статистика свидетельствует, что до 70%техногенных аварий и катастроф происходит вследствие ошибок персонала. Более 80% авиакатастроф и катастроф на море связаны с человеческим фактором. Для снижения этих показателей необходима более качественная подготовка персонала. Так, например, в США для подготовки оператора для АЭС затрачивается до 100 тыс. долларов. Необходимо поднимать престиж работы диспетчера и оператора.

3.Кульминации– стадия высвобождения энергии или вещества. На этой стадии отмечается наибольшее негативное воздействие на человека и окружающую среду вредных и опасных факторов чрезвычайной ситуации. Одной из особенностей этой стадии является взрывной характер разрушительного воздействия, вовлечение в процесс токсичных, энергонасыщенных и других компонентов.

4.Затухания– локализация чрезвычайной ситуации и ликвидация ее прямых и косвенных последствий. Продолжительность данной стадии различна, возможны дни, месяцы, годы и десятилетия.

Дата добавления: 2018-02-28 ; просмотров: 3229 ; Мы поможем в написании вашей работы!

Ядерное оружие – поражающие факторы, виды взрывов, история

Ядерное оружие – это один из основных видов оружия массового поражения. Оно способно в короткое время вывести из строя большое количество людей и животных, разрушить здания и сооружения на обширных территориях. Массовое применение ядерного оружия чревато катастрофическими последствиями для всего человечества, поэтому Советский Союз настойчиво и неуклонно ведет борьбу за его запрещение.

Население должно твердо знать и умело применять приемы защиты от оружия массового поражения, в противном случае неизбежны огромные потери. Всем известны ужасные последствия атомных бомбардировок в августе 1945 года японских городов Хиросима и Нагасаки – десятки тысяч погибших, сотни тысяч пострадавших. Если бы население этих городов знало средства и способы защиты от ядерного оружия, было бы оповещено об опасности и укрылось в убежищах, количество жертв могло быть значительно меньше.

Характеристика ядерного оружия. Виды ядерных взрывов

Поражающее действие ядерного оружия основано на энергии, выделяющейся при ядерных реакциях взрывного типа. Мощность взрыва ядерного боеприпаса принято выражать тротиловым эквивалентом, то есть количеством обычного взрывчатого вещества (тротила), при взрыве которого выделяется столько же энергии, сколько ее выделяется при взрыве данного ядерного боеприпаса. Тротиловый эквивалент измеряется в тоннах (килотоннах, мегатоннах).

Средствами доставки ядерных боеприпасов к целям являются ракеты (основное средство нанесения ядерных ударов), авиация и артиллерия. Кроме того, могут применяться ядерные фугасы.

Ядерные взрывы осуществляются в воздухе на различной высоте, у поверхности земли (воды) и под землей (водой). В соответствии с этим их принято разделять на высотные, воздушные, наземные (надводные) и подземные (подводные). Точка, в которой произошел взрыв, называется центром, а ее проекция на поверхность земли (воды) – эпицентром ядерного взрыва.

Поражающие факторы ядерного взрыва

Поражающими факторами ядерного взрыва являются ударная волна, световое излучение, проникающая радиация, радиоактивное заражение и электромагнитный импульс. Ударная волна – основной поражающий фактор ядерного взрыва, так как большинство разрушений и повреждений сооружений, зданий, а также поражения людей обусловлены, как правило, ее воздействием. Она представляет собой область резкого сжатия среды, распространяющуюся во все стороны от места взрыва со сверхзвуковой скоростью. Передняя граница сжатого слоя воздуха называется фронтом ударной волны.

Степень поражения ударной волной людей и различных объектов зависит от мощности и вида взрыва, а также от расстояния, на котором произошел взрыв, механической прочности (устойчивости) объекта, рельефа местности и положения объектов на ней.

Поражающее действие ударной волны характеризуется величиной избыточного давления. Избыточное давление – это разность между максимальным давлением во фронте ударной волны и нормальным атмосферным давлением перед фронтом волны. Оно измеряется в ньютонах на квадратный метр (Н/м 2 ). Эта единица давления называется паскалем (Па). 1 Н/м 2 = 1 Па (1 кПа ≈ 0,01 кгс/см 2 ).

При избыточном давлении 20 – 40 кПа незащищенные люди могут получить легкие поражения (легкие ушибы и контузии). Воздействие ударной волны с избыточным давлением 40 – 60 кПа приводит к поражениям средней тяжести: потеря сознания, повреждение органов слуха, сильные вывихи конечностей, кровотечение из носа и ушей. Тяжелые травмы возникают при избыточном давлении свыше 60 кПа и характеризуются сильными контузиями всего организма, переломами конечностей, поражением внутренних органов. Крайне тяжелые поражения, нередко со смертельным исходом, наблюдаются при избыточном давлении свыше 100 кПа.

Читайте также:
Октябрьская революция 1917 - причины, итоги и последствия

Скорость движения и расстояние, на которое распространяется ударная волна, зависят от мощности ядерного взрыва; с увеличением расстояния от места взрыва скорость быстро падает. Так, при взрыве боеприпаса мощностью 20 кт ударная волна проходит 1 км за 2 секунды, 2 км за 5 секунд, 3 км за 8 секунд. За это время человек после вспышки может укрыться и тем избежать поражения.

Световое излучение – это поток лучистой энергии, включающий ультрафиолетовые, видимые и инфракрасные лучи. Его источник – светящаяся область, образуемая раскаленными продуктами взрыва и раскаленным воздухом. Световое излучение распространяется практически мгновенно и длится в зависимости от мощности ядерного взрыва до 20 секунд. Однако сила его такова, что, несмотря на кратковременность, оно способно вызывать ожоги кожи (кожных покровов), поражение (постоянное или временное) органов зрения людей и возгорание горючих материалов и объектов.

Различают четыре степени ожогов. Ожоги первой степени характеризуются образованием красноты, припухлости и отеком кожи; второй степени – образованием пузырей; третьей степени – омертвением кожи и образованием язв; четвертой степени – омертвением не только кожи, но и глубоко лежащих тканей, а также обугливанием открытых частей тела.

Световое излучение не проникает через непрозрачные материалы, поэтому любая преграда, способная создать тень, защищает от прямого действия светового излучения и исключает ожоги. Значительно ослабляется световое излучение в запыленном (задымленном) воздухе, в туман, дождь, снегопад.

Проникающая радиация – это поток гамма-лучей и нейтронов. Она длится 10 – 15 секунд. Проходя через живую ткань, гамма-излучение и нейтроны ионизируют молекулы, входящие в состав клеток. Под влиянием ионизации в организме возникают биологические процессы, приводящие к нарушению жизненных функций отдельных органов и развитию лучевой болезни. В результате прохождения излучений через материалы окружающей среды уменьшается их интенсивность. Ослабляющее действие принято характеризовать слоем половинного ослабления, т. е. такой толщиной материала, проходя через которую интенсивность излучений уменьшается в два раза. Например, в два раза ослабляют интенсивность гамма-лучей сталь толщиной 2,8 см, бетон – 10 см, грунт – 14 см, древесина – 30 см.

Открытые и особенно перекрытые щели уменьшают воздействие проникающей радиации, а убежища и противорадиационные укрытия практически полностью защищают от нее.

Радиоактивное заражение. Основными его источниками являются продукты деления ядерного заряда и радиоактивные изотопы, образующиеся в результате воздействия нейтронов на материалы, из которых изготовлен ядерный боеприпас, и на некоторые элементы, входящие в состав грунта в районе взрыва.

При наземном ядерном взрыве светящаяся область касается земли. Внутрь ее затягиваются массы испаряющегося грунта, которые поднимаются вверх. Охлаждаясь, пары продуктов деления и грунта конденсируются на твердых частицах. Образуется радиоактивное облако. Оно поднимается на многокилометровую высоту, а затем со скоростью 25 – 100 км/ч движется по ветру. Радиоактивные частицы, выпадая из облака на землю, образуют зону радиоактивного заражения (след), длина которой может достигать нескольких сот километров. При этом заражаются местность, здания, сооружения, посевы, водоемы и т. п., а также воздух.

Наибольшую опасность радиоактивные вещества представляют в первые часы после выпадения, так как их активность в этот период наивысшая.

Электромагнитный импульс – это кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма-лучей и нейтронов, испускаемых при ядерном взрыве, с атомами окружающей среды. Следствием его воздействия может быть перегорание или пробои отдельных элементов радиоэлектронной и электротехнической аппаратуры. Поражение людей возможно только в тех случаях, когда они в момент взрыва соприкасаются с протяженными проводными линиями.

Наиболее надежным средством защиты от всех поражающих факторов ядерного взрыва являются защитные сооружения. В поле следует укрываться за прочными местными предметами, обратными скатами высот, в складках местности.

При действиях в зонах заражения для защиты органов дыхания, глаз и открытых участков тела от радиоактивных веществ используются средства защиты органов дыхания (противогазы, респираторы, противопыльные тканевые маски и ватно-марлевые повязки), а также средства защиты кожи.

Особенности поражающего действия нейтронных боеприпасов

Нейтронные боеприпасы являются разновидностью ядерных боеприпасов. Их основу составляют термоядерные заряды, в которых используются ядерные реакции деления и синтеза. Взрыв такого боеприпаса оказывает поражающее воздействие прежде всего на людей за счет мощного потока проникающей радиации, в котором значительная часть (до 40%) приходится на так называемые быстрые нейтроны.

При взрыве нейтронного боеприпаса площадь зоны поражения проникающей радиацией превосходит площадь зоны поражения ударной волной в несколько раз. В этой зоне техника и сооружения могут оставаться невредимыми, а люди получают смертельные поражения.

Для защиты от нейтронных боеприпасов используются те же средства и способы, что и для защиты от обычных ядерных боеприпасов. Кроме того, при сооружении убежищ и укрытий рекомендуется уплотнять и увлажнять грунт, укладываемый над ними, увеличивать толщину перекрытий, устраивать дополнительную защиту входов и выходов. Защитные свойства техники повышаются применением комбинированной защиты, состоящей из водородосодержащих веществ (например, полиэтилена) и материалов с высокой плотностью (свинец).

Очаг ядерного поражения

Очагом ядерного поражения называется территория, подвергшаяся непосредственному воздействию поражающих факторов ядерного взрыва. Он характеризуется массовыми разрушениями зданий, сооружений, завалами, авариями в сетях коммунально-энергетического хозяйства, пожарами, радиоактивным заражением и значительными потерями среди населения.

Размеры очага тем больше, чем мощнее ядерный взрыв. Характер разрушений в очаге зависит также от прочности конструкций зданий и сооружений, их этажности и плотности застройки.

За внешнюю границу очага ядерного поражения принимают условную линию на местности, проведенную на таком расстоянии от эпицентра (центра) взрыва, где величина избыточного давления ударной волны равна 10 кПа.

Очаг ядерного поражения условно делят на зоны – участки с примерно одинаковыми по характеру разрушениями.

Зона полных разрушений – это территория, подвергшаяся воздействию ударной волны с избыточным давлением (на внешней границе) свыше 50 кПа. В зоне полностью разрушаются все здания и сооружения, а также противорадиационные укрытия и часть убежищ, образуются сплошные завалы, повреждается коммунально-энергетическая сеть.

Зона сильных разрушений – с избыточным давлением во фронте ударной волны от 50 до 30 кПа. В этой зоне наземные здания и сооружения получат сильные разрушения, образуются местные завалы, возникнут сплошные и массовые пожары. Большинство убежищ сохранится, у отдельных убежищ будут завалены входы и выходы. Люди в них могут получить поражения только из-за нарушения герметизации убежищ, их затопления или загазованности.

Зона средних разрушений – с избыточным давлением во фронте ударной волны от 30 до 20 кПа. В ней здания и сооружения получат средние разрушения. Убежища и укрытия под-зального типа сохранятся. От светового излучения возникнут сплошные пожары.

Зона слабых разрушений – с избыточным давлением во фронте ударной волны от 20 до 10 кПа. Здания получат небольшие разрушения. От светового излучения возникнут отдельные очаги пожаров.

Зоны радиоактивного заражения на следе облака ядерного взрыва

Зона радиоактивного заражения – это территория, подвергшаяся заражению радиоактивными веществами в результате их выпадения после наземных (подземных) и низких воздушных ядерных взрывов.

Читайте также:
Восстание Уота Тайлера 1381 года ℹ причины крестьянского движения в Англии, ход основных событий, итоги и последствия, участники, значение в истории

Вредное воздействие ионизирующих излучений оценивается полученной дозой излучения (дозой радиации) Д, т. е. энергией этих лучей, поглощенной в единице объема облучаемой среды. Эта энергия измеряется существующими дозиметрическими приборами в рентгенах (Р). Рентген – это такое количество гамма-излучения, которое создает в 1 см 3 сухого воздуха (при температуре 0° С и давлении 760 мм рт. ст.) 2,08 X 10 9 ионов.

Для оценки интенсивности ионизирующего излучения, испускаемого радиоактивными веществами на зараженной местности, введено понятие “мощность дозы ионизирующего излучения” (уровень радиации). Ее измеряют в рентгенах в час (Р/ч), небольшие мощности дозы-в миллирентгенах в час (мР/ч).

Постепенно мощность дозы излучения снижается. Так, мощность дозы излучения (уровень радиации), замеренная через 1 час после наземного ядерного взрыва, через 2 часа уменьшится вдвое, спустя 3 часа – в четыре раза, через 7 часов – в десять раз, а через 49 часов – в сто раз.

Степень радиоактивного заражения и размеры зараженного участка (радиоактивного следа) при ядерном взрыве зависят от мощности и вида взрыва, метеорологических условий, а также от характера местности и грунта. Размеры радиоактивного следа условно делят на зоны.

Зона опасного заражения. На внешней границе зоны доза излучения (доза радиации) с момента выпадения радиоактивных веществ из облака на местность до полного их распада равна 1200 Р, мощность дозы излучения (уровень радиации) через 1 час после взрыва – 240 Р/ч.

Зона сильного заражения. На внешней границе зоны доза излучения – 400 Р, мощность дозы излучения через 1 час после взрыва – 80 Р/ч.

Зона умеренного заражения. На внешней границе зоны доза излучения – 40 Р, мощность дозы излучения через 1 час после взрыва – 8 Р/ч.

В результате воздействия ионизирующих излучений, так же как и при воздействии проникающей радиации, у людей возникает лучевая болезнь. Доза 100-200 Р вызывает лучевую болезнь первой степени, доза 200 – 400 Р – лучевую болезнь второй степени, доза 400 – 600 Р – лучевую болезнь третьей степени, доза свыше 600 Р – лучевую болезнь четвертой степени.

Доза однократного облучения в течение четырех суток до 50 Р, как и многократного облучения до 100 Р за 10 – 30 дней, не вызывает внешних признаков заболевания и считается безопасной.

Поражающие факторы ядерного взрыва, их параметры, единицы измерения, и их действие на инженерные сооружения и человека.

Поражающие факторы ядерного оружия

При ядерном взрыве действуют пять поражающих факторов: ударная волна, световое излучение, проникающая радиация, радиоактивное заражение, и электромагнитный импульс. Энергия ядерного взрыва распределяется примерно так: 50% расходуется на ударную волну, 35% – на световое излучение, 10% – на радиоактивное заражение, 4% – на проникающую радиацию и 1% – на электромагнитный импульс. Высокая температура и давление вызывают мощную ударную волну и световое излучение. Взрыв ядерного боеприпаса сопровождается выходом проникающей радиации, состоящей из потока нейтронов и гамма квантов. Облако взрыва содержит огромное количество радиоактивных продуктов – осколков деления ядерного горючего. По пути движения этого облака радиоактивные продукты из него выпадают, в результате чего происходит радиоактивное заражение местности, объектов и воздуха. Не равномерное движение электрических зарядов в воздухе под воздействием ионизирующих излучений приводит к образованию электромагнитного импульса. Так формируются основные поражающие факторы ядерного взрыва. Явления, сопровождающие ядерный взрыв, в значительной мере зависят от условий и свойств среды, в которой он происходит.

Contents

  • 1 Ударная волна
  • 2 Световое излучение
  • 3 Радиация
  • 4 Электромагнитный импульс (EMP)

Ударная волна [ ]

Ударная волна (УВ) основной поражающий фактор ядерного взрыва, который производит разрушение, повреждение зданий и сооружений, а также поражает людей и животных. Источником УВ является сильное давление, образующееся в центре взрыва (миллиарды атмосфер). Образовавшееся при взрыве раскаленные газы, стремительно расширяясь, передают давление соседним слоям воздуха, сжимая и нагревая их, а те в свою очередь воздействуют на следующие слои и т.д. В результате в воздухе со сверхзвуковой скоростью во все стороны от центра взрыва распространяется зона высокого давления.

Поражающее действие УВ характеризуется величиной избыточного давления.

Избыточное давление – это разность между максимальным давлением во фронте УВ и нормальным атмосферным давлением, измеряется в Паскалях (ПА, кПА). Распространяется со сверх звуковой скоростью, УВ на своем пути разрушает здания и сооружения, образуя четыре зоны разрушений (полных, сильных, средних, слабых) в зависимости от расстояния: Зона полных разрушений — 50 кПА Зона сильных разрушений — 30-50 кПА. Зона средних разрушений — 20-30 кПА. Зона слабых разрушений — 10-20 кПА.

Разрушения строительных сооружений, производимые избыточным давлением:
720 кг/м 2 (1 psi – фунт/кв. дюйм) – вылетают окна и двери;
2160 кг/м 2 (3 psi) – разрушение жилых домов;
3600 кг/м 2 (5 psi) – разрушение или сильное повреждение зданий из монолотного железобетона;
7200 кг/м 2 (10 psi) – разрушение особо прочных бетонных сооружений;
14400 кг/м 2 (20 psi) – выдерживают такое давление только специальные сооружения (типа бункеров).
Радиусы распространения этих зон давления можно рассчитать по следующей формуле: R = C * X 0.333 ,
R – радиус в километрах, X – заряд в килотоннах, C – константа, зависящая от уровня давления:
C = 2.2, для давления 1 psi
C = 1.0, для давления 3 psi
C = 0.71, для давления 5 psi
C = 0.45, для давления 10 psi
C = 0.28, для давления 20 psi

Ударная волна действует на людей двумя способами:

Прямое действие ударной волны и косвенное действие УВ ( летящими обломками сооружений, падающими стенами домов и деревьями, осколками стекла, камнями). Эти воздействия вызывают различные по степени тяжести поражения: Легкие поражения — 20-40 кПА (контузии, легкие ушибы). Средней тяжести — 40-60 кПА (потеря сознания, повреждение органов слуха, вывихи конечностей, кровотечение из носа и ушей, сотрясение мозга). Тяжелые поражение — более 60 кПА (сильные контузии, переломы конечностей, поражение внутренних органов). Крайне тяжелые поражения — более 100кПА ( со смертельным исходом). Эффективным способом защиты от прямого воздействия УВ будет укрытие в защитных сооружениях (убежищах, ПРУ, быстровозводимых населением). Для укрытия можно использовать канавы, овраги, пещеры, горные выработки, подземные переходы; можно просто лечь на землю в отдалении от зданий и сооружений.

Световое излучение [ ]

Световое излучение (СИ) – это поток лучистой энергии (ультрафиолетовые и инфракрасные лучи). Источником СИ является светящаяся область взрыва, состоящая из нагретых до высокой температуры паров и воздуха. СИ распространяется практически мгновенно и длится в зависимости от мощности ядерного боеприпаса (20-40 секунд). Однако не смотря на кратковременность своего воздействия эффективность действия СИ очень высока. СИ составляет 35% от всей мощности ядерного взрыва. Энергия светового излучения поглощается поверхностями освещаемых тел, которые при этом нагреваются. Температура нагрева может быть такой, что поверхность объекта обуглится, оплавится, воспламенится или объект испарится.

Поражающее действие светового излучения характеризуется световым импульсом, т. е. количеством световой энергии, приходящейся за время излучения на 1 см2 поверхности, перпендикулярно расположенной к направлению световых лучей. За единицу измерения светового импульса принимают 1 кал/см2.

Читайте также:
Группа Дятлова: подробности одной из самых громких трагедий XX века

Световое излучение может вызвать ожоги открытых участков тела, ослепление людей и животных, обугливание или возгорание различных материалов. Поражение людей СИ выражается в появлении ожогов четырех степеней на кожном покрове и действием на глаза.

Так, при световом импульсе 2—4 кал/см2 у незащищенных людей могут возникнуть ожоги первой степени (краснота, припухлость, отек кожи – 100-200 кДж/м2).

При 4—6 кал/см2— ожоги второй степени (на фоне отечной кожи образуются пузыри разных размеров, наполненные прозрачной желтоватой жидкостью– 200-400 кДж/м2).

При 6— 12 кал/см2—ожоги третьей степени (полное омертвление кожных покровов и образование язв – 400-600 кДж/м2)

При световом импульсе более 12 кал/см2 ожоги четвёртой степени (обугливание кожи, омертвление глубоких слоев кожи и подлежащих ткани (подкожная жировая клетчатка, мышцы, кости). – более 600 кДж/м2).

Действие СИ на глаза: Временное ослепление – до 30 мин. Ожоги роговицы и век. Ожог глазного дна – слепота.

Световое излучение вызывает ожоги кожи, степень которых зависит от силы бомбы и удаленности от эпицентра:

Тяжесть ожога

2.5 кал/см 2 (4.3 км)

3.2 кал/см 2 (18 км)

5 кал/см 2 (52 км)

5 кал/см 2 (3.2 км)

6 кал/см 2 (14.4 км)

8.5 кал/см 2 (45 км)

8 кал/см 2 (2.7 км)

10 кал/см 2 (12 км)

12 кал/см 2 (39 км)

Радиация [ ]

Проникающая радиация – это поток гамма-лучей и нейтронов, испускаемый из области взрыва в течении нескольких секунд. Из-за очень сильного поглощения в атмосфере, проникающая радиация поражает людей только на расстоянии 2-3 км от места взрыва, даже для больших по мощности зарядов. Расстояния, пройдя которое поток ослабевает в 10 раз для различных величин взрывов:
1 кт: L = 330 м
10 кт: L = 440 м
100 кт: – L = 490 м
1 Мт: L = 560 м
10 Мт: L = 670 м
20 Мт: L = 700 м.
Таким образом, можно вычислить уровень радиации на любом расстоянии от эпицентра :

Doze – доза приникающей радиации в рад, D – расстояние в метрах, L – константа ослабления, X – мощность взрыва в килотоннах.

При прохождении проникающей радиации через любую среду ее действие ослабляется. Излучение разных видов оказывают неодинаковое воздействие на организм, что объясняется разной их ионизирующей способностью.

Так альфа-излучения, представляющие собой тяжелые имеющие заряд частицы, обладают наибольшей ионизирующей способностью. Но их энергия, вследствие ионизации, быстро уменьшается. Поэтому альфа-излучения не способны проникнуть через наружный (роговой) слой кожи и не представляют опасности для человека до тех пор, пока вещества, испускающие альфа-частицы не попадут внутрь организма.

Бета-частицы на пути своего движения реже сталкиваются с нейтральными молекулами, поэтому их ионизирующая способность меньше, чем у альфа-излучения. Потеря же энергии при этом происходит медленнее и проникающая способность в тканях организма больше (1-2 см). Бета-излучения опасны для человека, особенно при попадании радиоактивных веществ на кожу или внутрь организма.

Гамма-излучение обладает сравнительно небольшой ионизирующей активностью, но в силу очень высокой проникающей способности представляет большую опасность для человека.

Ослабляющее действие ПР принято характеризовать слоем половинного ослабления, т.е. толщиной материала, проходя через который ПР уменьшается в два раза. Так, ПР ослабляют в два раза следующие материалы:

Свинец – 1.8 см Грунт, кирпич – 14 см Сталь – 2.8 см Вода – 23 см Бетон – 10 см Дерево – 30 см.

1 степень лучевой болезни – легкая – 100-200 бэр,

2 степень лучевой болезни – средней тяжести 200-400 бэр,

3 степень лучевой болезни – тяжелая – 400-600 бэр,

4 степень лучевой болезни – крайне тяжелая – более 600 бэр.

Радиоактивное заражение

З она А – умеренного заражения – от 40 до 400 бэр. Зона умеренного заражения – самая большая по размерам. В ее пределах население, находящееся на открытой местности, может получить в первые сутки после взрыва легкие радиационные поражения.

Менее 100 бэр. Такие дозы не оказывают существенного влияния на здоровье. Изменения в составе крови начинаются с 25 бэр. Эти изменения включают в себя общие изменение содержания белых кровяных клеток (уменьшение лимфоцитов), уменьшение тромбоцитов, и небольшое уменьшение красных кровяных клеток, такое состояние определяется лишь по анализу крови и устанавливается в течении нескольких дней после облучения. Продолжительность изменений в организме – около месяца. При 50 бэр становятся заметными ослабление лимфатических желез, снижение иммунитета. 80 Бэр дают 50% вероятность временного бесплодия у мужчин.

100-200 бэр. Симптомы умеренной степени тяжести. Возможна тошнота (в половине случаев при 200 бэр), иногда сопровождающаяся рвотой, появляющаяся через 3-6 часов после получения дозы и длящаяся от нескольких часов до дня. За этим следует период ремиссии, в течении которого пострадавший находится в нормальном самочувствии. Изменения в крови постепенно нарастают из-за естественной убыли и невосполнения кровяных клеток. Через 10-14 дней происходит следующее ухудшение самочувствия: потеря аппетита (у 50% при 150 бэр), недомогание, утомляемость (у 50% при 200 бэр) продолжающееся около месяца. В это время отмечается повышенная заболеваемость, из-за сниженного иммунитета, временное бесплодие у мужчин. Для доз из верхнего предела этого интервала клиническая картина сходная, за исключением меньшего периода ремиссии, более выраженных симптомов и большего периода выздоровления.

200-400 бэр. Степень заболевания достаточно серьезна. Основной пораженной тканью организма остается кроветворная. Тошнота наблюдается у 100% пострадавших при облучении в 300 бэр, в половине случаев она сопровождается рвотой. Начальные симптомы выявляются уже после 1-6 часов и длятся 1-2 дня. После 7-14 дней ремиссии, они возвращаются, к ним может прибавиться потеря волос, недомогание, усталость, диарея. При дозах более 350 бэр появляются кровотечения изо рта, подкожные, гематурия – наличие крови в моче. Возможно постоянное бесплодие у мужчин, выздоровление занимает несколько месяцев.

Зона Б – сильного заражения – от 400 до 1200 бэр. В зоне сильного заражения опасность для людей и животных выше. Здесь возможны тяжелые радиационные поражения даже за несколько часов пребывания на открытой местности, особенно в первые сутки.

400-600 бэр. При таких дозах полученной радиации, смертность, без оказания серьезной медицинской помощи (пересадка костного мозга), резко идет вверх: от 50% при 350 бэр до 90% при 600. Первоначальные симптомы возникают в период от 30 мин до 2 часов и продолжаются до двух дней. После 1-2 недель появляются все признаки характерные для облучения в 200-400 бэр, только в гораздо более тяжелой форме. Смерть наступает после 2-12 недель от многочисленных кровоизлияний и заражения каким-либо заболеванием (иммунитет практически отсутствует). Период излечения – около года, состав крови нормализуется еще дольше. Может происходить развитие бесплодия у женщин.

600-1000 бэр. Костный мозг отмирает практически полностью. Вероятность выжыть без его пересадки – отсутствует. Первоначальное ухудшение состояния наступает через 15-30 минут, и продолжается 2 дня. После 5-10 дней скрытого периода смерть наступает через 1-4 недели.

Зона В – опасного заражения – от 1200 до 4000 бэр. В зоне опасного заражения самые высокие уровни радиации. Даже на ее границе суммарная доза облучения за время полного распада радиоактивных веществ достигает 1200 р, а уровень радиации через 1 час после взрыва составляет 240 р/ч. В первые сутки после заражения суммарная доза на границе этой зоны составляет примерно 600 р, т.е. практически она смертельна. И хотя затем дозы облучения снижаются, на этой территории пребывание людей вне укрытий опасно очень продолжительное время.

Читайте также:
Города-герои России ВОВ, список обладателей звания, вклад

Более 1000 бэр. Такие высокие дозы ионизирующего излучения вызывают немедленное нарушение обмена веществ, понос, кровотечения, потерю жидкости организмом и нарушение электролитного баланса.
При дозах 1000 – 5000 бэр это время уменьшается до 5-30 минут. Если удается пережить этот период, наступает фаза мнимого благополучия от пары часов до пары дней. Термальная фаза продолжается 2-10 дней, в течении ее больной впадает в прострацию, теряет аппетит, начинается кровавый понос. Пострадавший впадает в делирий, затем кому. Лечение таких доз направлено только на облегчение страданий умирающего.

Зона Г – чрезвычайно опасного заражения – от 4000 до 7000 бэр. 100% смертельная зона для человека.

Получение более 5000 бэр приводит к нарушением, затрагивающим непосредственно нервную систему. Человек моментально теряет ориентацию, чуть позже впадает в кому. Смерть наступает в течении двух суток.
Согласно оценкам, доза в 8000 бэр, например от нейтронной бомбы, ведет к моментальному впадению в кому и последующей смерти.

Для защиты населения от РЗМ используются все имеющиеся защитные сооружения (убежища, ПРУ, подвалы многоэтажных домов, станции метрополитена). Эти защитные сооружения должны обладать достаточно высоким коэффициентом ослабления (Косл) – от 500 до 1000 и более раз, т.к. зоны радиоактивного заражения имеют высокие уровни радиации. В зонах РЗМ населению необходимо принимать радиозащитные препараты из АИ-2 (№1 и №2).

Электромагнитный импульс (EMP) [ ]

Ядерные взрывы в атмосфере и в более высоких слоях приводят к образованию мощных электромагнитных полей с длинами волн от 1 до 1000 м и более. Эти поля в виду их кратковременного существования принято называть электромагнитным импульсом (ЭМИ). Электромагнитный импульс возникает и в результате взрыва и на малых высотах, однако напряженность электромагнитного поля в этом случае быстро спадает по мере удаления от эпицентра. В случае же высотного взрыва, область действия электромагнитного импульса охватывает практически всю видимую из точки взрыва поверхность Земли. Поражающее действие ЭМИ обусловлено возникновением напряжений и токов в проводниках различной протяженности, расположенных в воздухе, земле, в радиоэлектронной и радиотехнической аппаратуре.

Наиболее подвержены воздействию ЭМИ линии связи, сигнализации и управления ракетных стартовых комплексов, командных пунктов. Большое количество ионов, оставшихся после взрыва, мешает коротковолновой связи и работе радаров. Защита от ЭМИ осуществляется экранированием линий управления и энергоснабжения, заменой плавких вставок (предохранителей) этих линий. ЭМИ составляет 1% от мощности ядерного боеприпаса.

На образование ЭМИ очень значительное влияние оказывает высота взрыва. ЭМИ силен при взрыве на высотах ниже 4 км, и особенно силен при высоте более 30 км, однако менее значителен для диапазона 4-30 км. Это происходит из-за того, что ЭМИ образуется при несимметричном поглощении гамма-лучей в атмосфере. А на средних высотак как раз такое поглощение происходит симметрично и равномерно, не вызывая больших флуктуаций в распределении ионов.

Виды ядерных взрывов и их отличие по внешним признакам

Ядерные взрывы могут осуществляться в воздухе на различной высоте, у поверхности земли (воды) и под землей (водой). В соответствии с этим ядерные взрывы разделяют на воздушные, высотные, наземные (надводные) и подземные (подводные). Мощность ядерных боеприпасов характеризуют тротиловым эквивалентом, то есть таким количеством тратила в тоннах, при взрыве которого выделяется такое же количество энергии, что и при взрыве данного ядерного заряда. По мощности ядерные боеприпасы условно делятся на сверхмалые (до 1 кт), малые (от 1 до 10 кт), средние (от 10 до 100 кт), крупные (от 100 кт до 1 мт), сверхкрупные (свыше 1 мт).

Воздушный ядерный взрыв

К воздушным ядерным взрывам относятся взрывы в воздухе на такой высоте, когда светящаяся область взрыва не касается поверхности земли (воды). Одним из признаков воздушного взрыва является то, что пылевой столб не соединяется с облаком взрыва (высокий воздушный взрыв). Воздушный взрыв может быть высоким и низким. Точка на поверхности земли (воды), над которой произошел взрыв, называется эпицентром взрыва. Воздушный ядерный взрыв начинается ослепительной кратковременной вспышкой, свет от которой может наблюдаться на расстоянии нескольких десятков и сотен километров. Вслед за вспышкой в месте взрыва возникает шарообразная светящаяся область, которая быстро увеличивается в размерах и поднимается вверх. Температура светящейся области достигает десятков миллионов градусов. Светящаяся область служит мощным источником светового излучения. Увеличиваясь, огненный шар быстро поднимается вверх и охлаждается, превращаясь в поднимающееся клубящееся облако. При подъеме огненного шара, а затем клубящегося облака создается мощный восходящий поток воздуха, который засасывает с земли поднятую взрывом пыль, которая удерживаются в воздухе в течение нескольких десятков минут. При низком воздушном взрыве столб пыли, поднятый взрывом, может соединиться с облаком взрыва; в результате образуется облако грибовидной формы. Если воздушный взрыв произошел на большой высоте, то столб пыли может и не соединиться с облаком. Облако ядерного взрыва, двигаясь по ветру, утрачивает свою характерную форму и рассеивается. Ядерный взрыв сопровождается резким звуком, напоминающим сильный раскат грома. Этот звук слышен за несколько десятков километров. Воздушные взрывы могут применяться противником для поражения войск на поле боя, разрушения городских и промышленных зданий, поражения самолетов и аэродромных сооружений. Поражающими факторами воздушного ядерного взрыва являются: ударная волна, световое излучение, проникающая радиация и электромагнитный импульс.

Высотный ядерный взрыв

Высотный ядерный взрыв производится на высоте от 10 км и более от поверхности земли. При высотных взрывах на высоте нескольких десятков километров в месте взрыва образуется шарообразная светящаяся область, размеры ее больше, чем при взрыве такой же мощности в приземном слое атмосферы. После остывания светящаяся область превращается в клубящееся кольцевое облако. Пылевой столб и облако пыли при высотном взрыве не образуются. При ядерных взрывах на высотах до 25-30 км поражающими факторами этого взрыва являются ударная волна, световое излучение, проникающая радиация и электромагнитный импульс. С увеличением высоты взрыва вследствие разрежения атмосферы ударная волна значительно ослабевает, а роль светового излучения и проникающей радиации возрастает. Взрывы, происходящие в ионосферной области, создают в атмосфере районы или области повышенной ионизации, которые могут влиять на распространение радиоволн (ультракоротковолнового диапазона) и нарушать работу радиотехнических средств. Радиоактивное заражение поверхности земли при высотных ядерных взрывах практически отсутствует. Высотные взрывы могут применяться для уничтожения воздушных и космических средств нападения и разведки: самолетов, крылатых ракет, спутников, головных частей баллистических ракет.

Наземный ядерный взрыв

Наземным ядерным взрывом называется взрыв на поверхности земли или в воздухе на небольшой высоте, при котором светящаяся область касается земли. При наземном взрыве светящаяся область имеет форму полусферы, лежащей основанием на поверхности земли. Если наземный взрыв осуществляется на поверхности земли (контактный взрыв) или в непосредственной близости от нее, в грунте образуется большая воронка, окруженная валом земли. Размер и форма воронки зависят от мощности взрыва; диаметр воронки может достигать несколько сотен метров. При наземном взрыве образуется мощное пылевое облако и столб пыли, чем при воздушном, причем столб пыли с момента его образования соединен с облаком взрыва, в результате чего в облако вовлекается огромное количество грунта, который придает ему темную окраску. Перемешиваясь с радиоактивными продуктами, грунт способствует их интенсивному выпадению из облака. При наземном взрыве радиоактивное заражение местности в районе взрыва и по следу движения облака значительно сильнее, чем при воздушном. Наземные взрывы предназначаются для разрушения объектов, состоящих из сооружений большой прочности, и поражения войск, находящихся в прочных укрытиях, если при этом допустимо или желательно сильное радиоактивное заражение местности и объектов в районе взрыва или на следе облака. Эти взрывы применяются и для поражения открыто расположенных войск, если необходимо создать сильное радиоактивное заражение местности. При наземном ядерном взрыве поражающими факторами являются ударная волна, световое излучение, проникающая радиация радиоактивное заражение местности и электромагнитный импульс.

Читайте также:
Чеченская война🌟, из-за чего начался конфликт с Чечней, хроника, итоги, потери сторон, основные этапы войны

Подземный ядерный взрыв

Подземным ядерным взрывом называется взрыв, произведенный на некоторой глубине в земле. При таком взрыве светящаяся область может не наблюдаться; при взрыве создается огромное давление на грунт, образующаяся ударная волна вызывает колебания почвы, напоминающие землетрясение. В месте взрыва образуется большая воронка, размеры которой зависят от мощности заряда, глубины взрыва и типа грунта; из воронки выбрасывается огромное количество грунта, перемешанного с радиоактивными веществами, которые образуют столб. Высота столба может достигать многих сотен метров. При подземном взрыве характерного, грибовидного облака, как правило, не образуется. Образующийся столб имеет значительно более темную окраску, чем облако наземного взрыва. Достигнув максимальной высоты, столб начинает разрушаться. Радиоактивная пыль, оседая на землю, сильно заражает местность в районе взрыва и по пути движения облака. Подземные взрывы могут осуществляться для разрушения особо важных подземных сооружений и образования завалов в горах в условиях, когда допустимо сильное радиоактивное заражение местности и объектов. При подземном ядерном взрыве поражающими факторами являются сейсмовзрывные волны и радиоактивное заражение местности.

Надводный ядерный взрыв

Этот взрыв имеет внешнее сходство с наземным ядерным взрывом и сопровождается теми же поражающими факторами, что и наземный взрыв. Разница заключается в том, что грибовидное облако надводного взрыва состоит из плотного радиоактивного тумана или водяной пыли. Характерным для этого вида взрыва является образование поверхностных волн. Действие светового излучения значительно ослабляется вследствие экранирования большой массой водяного пара. Выход из строя объектов определяется в основном действием воздушной ударной волны. Радиоактивное заражение акватории, местности и объектов происходит вследствие выпадения радиоактивных частиц из облака взрыва. Надводные ядерные взрывы могут осуществляться для поражения крупных надводных кораблей и прочных сооружений военно-морских баз, портов, когда допустимо или желательно сильное радиоактивное заражение воды и прибрежной местности.

Подводный ядерный взрыв

Подводным ядерным взрывом называется взрыв, осуществленный в воде на той или иной глубине. При таком взрыве вспышка и светящаяся область, как правило, не видны. При подводном взрыве на небольшой глубине над поверхностью воды поднимается полый столб воды, достигающий высоты более километра. В верхней части столба образуется облако, состоящее из брызг и паров воды. Это облако может достигать несколько километров в диаметре. Через несколько секунд после взрыва водяной столб начинает разрушаться и у его основания образуется облако, называемое базисной волной. Базисная волна состоит из радиоактивного тумана; она быстро распространяется во все стороны от эпицентра взрыва, одновременно поднимается вверх и относится ветром. Спустя несколько, минут базисная волна смешивается с облаком султана (султан – клубящееся облако, окутывающее верхнею часть водяного столба) и превращается в слоисто-кучевое облако, из которого выпадает радиоактивный дождь. В воде образуется ударная волна, а на ее поверхности – поверхностные волны, распространяющиеся во все стороны. Высота волн может достигать десятков метров. Подводные ядерные взрывы предназначены для уничтожения кораблей и разрушений подводной части сооружений. Кроме того, они могут осуществляться для сильного радиоактивного заражения кораблей и береговой полосы.

Поражающие факторы ядерного оружия

На протяжении всей своей истории человек создавал совершенные инструменты для решения поставленных целей. Понадобился дом – появился молоток. Нужды комфорта и желание познавать новое двигали разум по направлению к развитию и самообогащению. Но процветание общества не всегда означает мир и согласие между его членами. Порой возникает необходимость доказать свою позицию чем-либо кроме слов. Так родилась идея вооружения. Наблюдая за природными процессами, люди создавали копья, луки, мечи, топоры. В ответ им выковывались доспехи и сбивались щиты. Но когда начал набирать обороты научный прогресс, стали создаваться более совершенные виды «острых палок». Началось все с двух супругов, которые горели идей исследования нового – семейства Кюри (Рисунок 1).

Рисунок 1. Пьер и Мария Кюри

В конце XIX столетия они занимались исследованиями странных минералов, вызывавших интерес научного общества. В 1896 году Анри Беккерель установил, что урановые руды способны испускать излучение, но не смог объяснить природу его появления. Все идеи оканчивались теорией годичной давности, разработанной Вильгельмом Рентгеном, которая объясняла появление излучения под воздействием внешних источников. Однако теория имела огромное белое пятно относительно природы странного излучения, испускаемого тяжёлым веществом, добываемым в урановых карьерах. И вот супружеская пара поставила цель докопаться до истины. Постепенно и кропотливо супруги обрабатывали тонны руды, чтобы выделить очищенный метал. Спустя некоторое время им это удалось, и началась длинная серия экспериментов. Результаты их работы сильно повлияли на научное сообщество: был дан мощный толчок развитию классической физики и заложен фундамент для исследования ядерного синтеза (Рисунок 2). Множество умов занялись этим вопросом, ведь энергия, заключённая в атомах была огромной, а потенциал её применения – безграничным. Пролить свет на происходящее удалось пытливому уму Эрнеста Резерфорда.

Рисунок 2. Исследование ядерного синтеза

Поставив эксперимент по рассеиванию частиц, он смог доказать бинарную природу заряда атома. Положительный заряд сосредотачивался в ядре, а электронное облако вокруг обладало отрицательным зарядом. Дело оставалось за малым: понять, как можно использовать полученные знания для получения благ. Ответ был получен благодаря работам Эйнштейна. Выдвинутая им теория позволяла взглянуть на материю как на энергию, заключённую внутри атомных ядер. Как выяснилось позже, в результате цепной реакции распада, уран высвобождает огромное количество энергии. После открытия этой взаимосвязи последовала череда экспериментов, и началась работа над самым смертельным видом оружия – атомной бомбой.

Поражающие факторы ядерного оружия

Принцип действия атомной бомбы основан на высвобождении энергии, заключённой внутри ядра химического элемента. Чтобы осуществить этот процесс, необходимо использовать нестабильные изотопы, которые обладают высоким атомным числом. Чем оно выше, тем больше в ядре находится протон-нейтронных пар и как следствие – больше энергии. Исследования показали, что больше всего подходят уран-235 и плутоний-239 (Рисунок 3).

Читайте также:
Пакт Молотова-Риббентропа - суть, условия, основные положения

Рисунок 3. Уран-235 (слева) и Плутоний-239 (справа)

Они обладают оптимальными показателями для производства, но есть проблема, связанная с их распространённостью в чистом виде. Если доля изотопа урана-235 в породах составляет 0,7% и с этим ещё можно работать, то плутоний-239 вообще не существует в чистом виде. Их нужно получать производственным путём, обогащая уже имеющиеся стабильные элементы. Происходит это следующим образом – в ускорителе частиц или промышленном реакторе стабильный атом вещества бомбардируют нейтронами для искусственного повышения его атомного номера. Весьма трудоёмкий процесс, но благодаря работе ядерных реакторов значительно упрощённый. Отходы их производства можно пустить по вторичному кругу для получения обогащённого топлива. Уже подвергнутые обработке ресурсы будут использованы для создания боеголовки.

По принципу действия разделяют несколько категорий снарядов:

  • Однофазное ядерное оружие, поражающие факторы ядерного взрыва которого ограничены энергетическим выходом ядерной реакции деления с образованием лёгких элементов. Во время взрыва реагирует не все активное вещество: приблизительно от 50 до 80%;
  • Двухфазные или водородные боеприпасы (Рисунок 4). Механизм их работы основан на принципе последовательности РДС. Сначала происходит распад и деление тяжёлых ядер, после чего на второй стадии это дополняется термоядерным синтезом. В зависимости от стратегических требований, их пропорции можно настроить для получения определённого выхода энергии.

Рисунок 4. Водородная бомба и, предположительно, кратер после взрыва подобной бомбы на испытаниях

Также они могут различаться по механизму зажигания заряда:

  • Пушечная схема ускорения заряда внутри полой трубки при помощи порохового заряда. Одна из действующих частей приводится в движение детонацией пороха, ускоряясь по направлению ко второй части, называемой мишенью. После их столкновения они достигают критической массы, и инициируется взрыв. Для более эффективной работы устройства заряд замедляется до рабочих 200-300 метров в секунду;
  • Имплозивный тип. Внутри сферической оболочки по каналам располагаются синхронизированные заряды взрывчатых веществ. Эти каналы называются взрывными линзами, и их функция заключается в фокусировке ударной волны для сжатия ядра из активного вещества. В конструкции используется медленный и быстрый тип веществ для получения стабильной взрывной волны по всем фронтам без отклонений. Любые задержки вызовут помехи в работе и не приведут к детонации. Испытания показали, что это неэффективный способ детонации, и ему требуется доработка;
  • Лебединая шея. Является вариацией имплозивного типа снаряда, за исключением того, что применяется не сферическая, а продольная форма колбы. Её форма близка к скрещиванию шей двух лебедей, что и породило такое название. В роли внутреннего наполнителя между источником заряда и активной частью выступает пенополистирол. Ключевым свойством этого материала является замедление взрывной волны и обеспечение последовательности детонации. Проходящий через него импульс становится скоординированным, и достигает сферического контейнера с одинаковой скоростью по всей его поверхности. Это приводит к сжатию внутреннего наполнения и достижению критической массы. После чего оружие ядерного поражения детонирует.

При конструировании двухфазных бомб используется оболочка, отражающая нейтроны и усиливающая взрывной эффект – тампер.

Рисунок 5. Самая мощная водородная бомба за всю историю: “Царь-бомба” и её взрыв на полигоне “Новая Земля”

Он, поглотив определённое количество быстрых нейтронов, начинал делиться сам. По аналогичному принципу работает ядерное оружие химического поражения, где основная поражающая роль сконцентрирована на выбросе токсинов. В поздних версиях снаряда стали использовать оболочку из свинца или вольфрама во избежание излишнего загрязнения. Происходящие во время взрыва процессы высвобождают широкий спектр различного рода излучения. Факторы поражения ядерного оружия имеют чёткую последовательность, основанную на скорости распространения в среде продуктов реакции. В течении короткого промежутка времени оружие ядерного поражения высвобождает поток неуправляемой энергии различных видов.

Основные поражающие факторы:

  1. Первым поражающим фактором становится световое излучение. Оно появляется после того как разъярённое атомное пламя прорывает оболочку бомбы, и наружу вырывается раскалённое до десятков тысяч градусов вещество. Состав разнится в зависимости от конструкционных особенностей, но общая черта взрывов – они сияют ярче солнца. И это сияние опасно. Способное оставить на теле ожоги четвертой степени, а то и вовсе испепелить, оно преодолевает сотни метров менее чем за наносекунду. Вся окружающая территория будет выжжена в течение мгновения;
  2. Следующий по очерёдности поражающий фактор ядерного оружия – ударная волна. Появившаяся в результате сверхбыстрого расширения воздушных масс, вызванных стремительно нарастающим огненным шаром, она догоняет поражённые участки спустя пару секунд. По мощности её можно сравнить с небольшим ураганом, который переворачивает машины;
  3. Поражающие факторы ядерного оружия не ограничиваются лишь световым испепелением и ударной волной. Опасности добавляет остаточное радиационное излучение. В результате лавинообразно протекающей цепной реакции распада ядер активного вещества происходит выброс во внешнюю среду побочных продуктов распада. К ним причисляют альфа-, бета- и гамма- излучение и определённую долю рентгеновского воздействия;
  4. Боевые свойства и поражающие факторы ядерного оружия поистине впечатляют – разрушение построек в мгновение ока (Рисунок 6), выжигание всей жизни волной радиационного излучения, остаточное загрязнение окружающей среды. В качестве дополнения к основным свойствам идут кратер, оставленный взрывом и загрязнение почвы опасными токсинами.

Рисунок 6. Разрушение здания во время ядерного взрыва

По природе взрыва ядерного оружия, виды поражающих факторов, достигающие цели, могут отличаться.

Выделяют следующие типы взрывов:

  1. Тропосферный, на высоте 12 км;
  2. В пределе между термосферой и экзосферой;
  3. Вне земного воздушного пространства (посреди межпланетного космоса);
  4. На поверхности земной коры;
  5. Глубинный, в земной коре;
  6. Глубоководный и надводный.

Поражающие факторы ядерного оружия для каждого из этих типов будут разными, и огромную роль играет именно среда распространения. К примеру, подземный взрыв не будет иметь светового излучения, а глубоководный – ударной волны.

Световое излучение

При столь мощном взрыве температурные показатели могут достигать запредельных высот от 10 000 000 Кельвинов. Для сравнения температура плавления Вольфрама – 3 625 градусов по Кельвину. Такой перегрев превращает сталь в газ, и в процессе нагрева атомы теряют все электроны, испускаемые в форме светового потока. Продолжительность возникновения лучей варьируется с изменением уровня мощности – от малых долей секунды до десятков единиц. Воздействие ядерного света на людей и животных причиняет ожоги различной степени тяжести, выжигание сетчатки глаза (Рисунок 7), а также оплавление, обугливание и возгорание материалов, не способных выдерживать высокие температуры.

Рисунок 7. Последствия светового излучения при ядерном взрыве в Хиросиме

Большая плотность огненного шара имеет поглощающую способность, очень близкую к идеально чёрному телу. Поэтому в спектре преобладает ультрафиолет и рентген лучи. Время на реагирование и поиски укрытия будут, только если заметить падение бомбы заранее. В противном случае световое излучение застанет человека врасплох. Ослабить поражающие факторы могут непрозрачные материалы находящиеся поблизости. Постройки из кирпича и бетона, деревянные коробки, мебель, различного рода возвышения и углубления в земле. На крайний случай сработает простыня из очень плотной ткани, многократно обмотанная по всему телу. Когда вокруг нет каких либо заграждений, следует лечь на живот, направив ноги к очагу реакции и закрыв лицо. Так можно избежать значительных ожогов и травм.

Читайте также:
Первая русская революция 1905-1907 гг. ☑ причины и предпосылки, этапы и основные события, задачи и итоги кратко, последствия, участники, список партий в годы революции

Проникающая радиация

Вторым по опасности пунктом станут потоки высокоэнергетических частиц, появившихся в результате ядерной реакции. Огромное количество смертельно опасного для жизни ионизирующего излучения испускается в течение малых долей секунды. На величину поражающего радиуса в атмосфере влияет поглощение частиц окружающей средой. Наибольшую опасность радиоактивного заражения представляет только надземный взрыв. Свою смертоносность этот поток сохраняет только на протяжении 2.5 километров, даже для зарядов, превышающих по мощности бомбы, сброшенные на Хиросиму и Нагасаки в 1945. Попадая в материалы, быстрые нейтроны нарушают кристаллические решётки и приводят к разрушению всей структуры твёрдого тела.

Рисунок 8. Материалы, способные замедлить поражающий фактор – проникающую радиацию

Надёжной защитой от такого рода воздействия служат вещества способные замедлить распространение бета- и гамма излучения. Бетон, сталь, свинец и даже кирпичная кладка, за неимением лучшего, способны вполовину замедлить поражающий фактор (Рисунок 8). На крайний случай в качестве укрытия подойдут глубокие водоёмы, подвалы и толстые деревья.

Радиационное заражение

Последствием ядерной детонации становится не только загрязнение электромагнитного спектра в течение нескольких секунд, но и остаточное загрязнение (Рисунок 9).

Рисунок 9. Радиационное заражение и его последствия (Чернобыль)

Не вступившая в реакцию часть топлива и продукты распада основных веществ послужат источниками наведённой радиации. Во время взрыва все это выбрасывается в атмосферу и опадает с осадками в течение последующих дней. В результате нарушениям атомарной структуры подвержены металлические конструкции: корпуса автомобилей, броня танков, железная дорога, составы поездов, армированный бетон.

Электромагнитный импульс

Облучённый воздух ионизируется и, как последствие, образуется разность зарядов и потенциалов. Это даёт начало появлению переменного волнового поля – электромагнитного импульса. Влияние на человеческое тело минимальное, не приносящее вреда. Но перегорают электроприборы на основе кремния, транзисторов и проводящих металлов – компьютерная и измерительная техника, глушится работа радиотехники, перегорают линии электропередач (Рисунок 10).

Рисунок 10. Схема влияния электромагнитного импулься при высотном ядерном взрыве

Очаг зоны поражения ядерного оружия

Зоны поражения ядерного оружия разделяются по дистанции от очага возникновения реакции.

Год гражданской обороны: ядерное оружие и его поражающие факторы

Ядерное оружие – оружие массового поражения взрывного действия, основанное на использовании внутриядерной энергии. Энергия выделяется при делении ядер тяжелых элементов (урана-235 или плутония-239) в результате цепной реакции.

Мощность различных ядерных боеприпасов измеряют в сотнях, тысячах (кило) и миллионах (мега) тонн тротилового эквивалента, т. е. количеством обычного взрывчатого вещества (тротила), при взрыве которого выделяется столько же энергии, сколько ее выделяется при взрыве данного ядерного боеприпаса.

Средствами доставки ядерных боеприпасов к целям являются ракеты, авиация и артиллерия. Кроме того, могут применяться ядерные фугасы.

Ядерные взрывы могут производиться в воздухе на различной высоте (высотный и воздушный взрывы), у поверхности земли (наземный взрыв), под землей (подземный взрыв), под водой (подводный взрыв), над водой (надводный взрыв).

Точка, где произошел взрыв, называется центром, а ее проекция на поверхность земли (воды) – эпицентром ядерного взрыва.

Очагом ядерного поражения называется территория, которая подверглась непосредственному воздействию поражающих факторов ядерного взрыва. При ядерном взрыве действуют пять поражающих факторов: ударная волна, световое излучение, ионизирующее излучение (проникающая радиация), радиоактивное заражение и электромагнитный импульс.

Ударная волна является основным поражающим фактором, так как на ее образование расходуется около 50% энергии ядерного взрыва. Она представляет собой область сильно сжатого воздуха, которая движется со сверхзвуковой скоростью (более 331 м/с) во все стороны от центра взрыва. Передняя граница сжатого слоя воздуха называется фронтом ударной волны.

Характер разрушений в очаге ядерного поражения зависит от прочности конструкций зданий и сооружений, плотности застройки. Различают четыре зоны разрушений (полная, сильная, средняя, слабая).

Воздействие ударной волны может привести к потере сознания, повреждению органов слуха, силы вывихам конечностей, кровотечению из носа, ушей, контузии, перелому конечностей, поражении внутренних органов.

От воздействия ударной волны человека надежно могут защитить убежища и укрытия, которые строятся с учетом противоядерной защиты.

Световое излучение представляет собой поток видимых, инфракрасных и ультрафиолетовых лучей, не ходящих от светящейся области, состоящей из продуктов взрыва и воздуха, разогретых до миллионов градусов. На его образование расходуется 30 – 35% всей энергии взрыва. Продолжительность его зависит от мощности взрыва и колеблется от долей секунды до 20-30 с.

Сила светового излучения такова, что оно способно вызывать ожоги кожных покровов, поражение глаз, может вызвать массовые пожары в населенных пунктах, в лесах и других местах.

Защитой от светового излучения могут быть любые преграды, не пропускающие свет: укрытия, тень густого дерева, забор и т. п.

Ионизирующее излучение – поток элементарных частиц и электромагнитных лучей, не видимых и не ощущаемых человеком, испускаемых в момент ядерного взрыва.

Действие ионизирующего излучения длится 10 – 15 с. Проходя через различные материалы окружающей среды, происходит ослабление действия проникающей радиации. Действие ионизирующих излучений на людей и животных заключается в разрушении живых клеток организма, которое может привести к различным лучевым поражениям и даже к смерти. Чтобы оценить влияние ионизирующих излучений на человека (животное), надо учитывать две основные характеристики: ионизирующую и проникающую способности. Альфа-излучение обладает высокой ионизирующей и слабой проникающей способностью. Обыкновенная одежда полностью защищает человека. Самым опасным является попадание альфа-частиц внутрь организма с воздухом, водой и пищей. Бета-излучение имеет меньшую ионизирующую способность, чем альфа-излучение, но большую проникающую способность. Одежда уже не может полностью защитить, нужно использовать любое укрытие. Это будет много надежнее. Гамма- и нейтронное излучения обладают очень высокой проникающей способностью, защиту от них могут обеспечить только убежища, противорадиационные укрытия, надежные подвалы и погреба.

Радиоактивное заражение. Местность заражается радиоактивными веществами неравномерно. В зависимости от степени заражения и опасности поражения людей след делится на четыре зоны:

– Г – чрезвычайно опасного заражения.

В результате воздействия ионизирующих излучений у людей возникает лучевая болезнь.

Электромагнитный импульс (ЭМИ) – это кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса. На его образование расходуется около 1% всей энергии взрыва. Продолжительность действия – несколько десятков миллисекунд. Поражение людей возможно только в тех случаях, когда они в момент взрыва соприкасаются с протяженными проводными линиями.

Ядерный взрыв сопровождается очень яркой вспышкой, резким, оглушительным звуком, может образоваться светящаяся сфера. При обнаружении этих признаков рекомендуется быстро занять имеющиеся поблизости воронки, канавы, ямы и другие укрытия или лечь на землю, головой в противоположную от взрыва сторону.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: