Круговорот азота в природе ℹ описание, схема, этапы, влияние человека

Круговорот азота в природе

Средняя оценка: 4.2

Всего получено оценок: 355.

Средняя оценка: 4.2

Всего получено оценок: 355.

Азот – один из жизненно важных элементов. Азот не фиксируется в организме в свободном виде. Поэтому в круговороте азота в природе помогают бактерии.

Общее описание

Азот – седьмой элемент периодической таблицы Менделеева. Проявляет две валентности – III и V. В природе это двухатомный газ (N2), плохо растворимый в воде. За счёт прочной тройной связи между атомами азот является малоактивным веществом, вступающим в реакции только при нагревании или под действием катализатора.

Рис. 1. Строение молекулы азота.

Элемент присутствует в почве, воде, живых организмах в составе сложных веществ. Свободный азот относительно стабилен в атмосфере, его содержание – 78 % от общего объёма газов. Азот может принимать жидкую и твёрдую формы.

Элемент входит в состав аминокислот и белков, нуклеиновых кислот. Без азота невозможно построение ДНК.

Круговорот

Схему круговорота азота в природе условно можно разделить на две части – грунтовую и атмосферную. Круговорот азота через почву осуществляется следующим образом:

  • в результате гниения органических веществ (растений, животных) азот превращается в аммиак (NH3);
  • под действием бактерий аммиак окисляется до азотной кислоты (HNO3);
  • азотная кислота вступает в реакцию с элементами почвы, образуя кислые соли (нитраты) – СаСО3, Ca(NO3)2;
  • нитраты поглощают растения.

В атмосферу азот также попадает в результате гниения или при горении органических веществ, например, дров или торфа. Под действием разрядов молнии азот соединяется с кислородом, образуя оксид азота (II) – NO, а затем оксид азота (IV) – NO2.

Кроме того, свободный азот способны усваивать азотфиксирующие бактерии и некоторые виды сине-зеленых водорослей. Азотфиксирующие бактерии (азотфиксаторы) находятся в симбиозе с растениями. Например, клубеньковые бактерии живут на корнях бобовых растений. Азотфиксаторы могут усваивать азот в присутствии или в отсутствии кислорода, т.е. могут являться аэробами или анаэробами. Они также синтезируют нитраты.

Рис. 2. Азотфиксирующие бактерии на клубнях.

Растения могут усваивать азот только в составе солей азотной кислоты. Вместе с листьями азот попадает сначала в организм травоядных животных (консументов первого порядка), а затем – хищных животных (консументов второго порядка). Обратно азот возвращается при гниении и в составе мочевины (CH4N2O).

Рис. 3. Схема круговорота азота в природе.

Часть нитратов окисляется специальными денитрифицирующими бактериями до свободного азота, который возвращается в атмосферу. Процесс восстановления свободного азота из сложных соединений называется денитрификацией.

Что мы узнали?

Рассмотрели описание круговорота азота в природе. Азот – важный элемент, необходимый живым организмам для постройки тканей и синтеза ДНК. Свободный азот плохо вступает в реакции за счёт прочных тройных связей. Поэтому в усвоении азота помогают бактерии, синтезируя аммиак, азотную кислоту, нитраты. В составе солей азот попадает в растения и далее по пищевой цепочке в организмы травоядных и хищных животных. Новый цикл начинается при отмирании и разложении живых организмов.

Круговорот азота в природе — описание, этапы и значение процесса

Азот — вещество, непрерывно циркулирующее в земной биосфере. В переводе с латинского означает «безжизненный». Представляет собой газообразный элемент, не имеющий запаха, цвета и вкуса. Он чаще других встречается в природе. Это первичный и важный элемент любого живого существа. Круговорот азота — биохимический процесс, обусловленный жизнедеятельностью различных организмов и человека.

Значение круговорота N2 для биосферы

Для того чтобы дать описание и схему круговорота азота в природе, нужно помнить, что этот элемент — важная часть белков и ДНК. Без него жизни, какой её знает человечество, могло и не быть. Но биологические существа способны усвоить его только в определённом виде. В результате различных геологических процессов этот элемент принимает ту форму, которой могут воспользоваться организмы. Обмен элементами между живыми существами, воздухом, водой и земной корой получил название биогеохимических циклов.

Таким образом, микроэлементы, являющиеся частью биологического организма, возвращаются в природу. В этом процессе частицы постоянно перемещаются между воздухом, водой и живыми организмами, в противном случае жизнь давно бы истратила свои ресурсы.

N2 входит в состав всего живого. Это один из самых популярных в природе элементов. Атмосфера земли на 78% состоит из N2. Он также содержится в воде и почве и входит в состав белков.

Этот элемент включается в синтез важнейших органических молекул, белков и нуклеиновых кислот. Азот в виде газа, содержащийся в атмосфере, довольно инертен и немногие организмы способны получать его из воздуха. Растения могут поглощать лишь связанный микроэлемент, то есть в составе химических соединений.

Молекулярный азот — очень стойкое соединение. Для его разрушения необходимо большое количество энергии.

Связывание или фиксация происходит тремя способами:

  1. За счёт электрических разрядов молний. Они расщепляют молекулы, позволяя вступать в соединения с кислородом. Образованный таким способом оксид азота растворяется в дождевой воде и поступает в почву, откуда его поглощают растения. Именно вспышки молний играют важную роль в развитии жизни на нашей планете.
  2. Человек — ещё один источник. Человеческая деятельность значительно увеличила его количество в природе. Сегодня треть этого связанного азота попадает в биосферу, благодаря широкому применению искусственных удобрений, содержащих нитраты. В промышленности связывание этого элемента с водородом происходит при температуре от 400 до 600 градусов по Цельсию и давлении до 1 тысячи атмосфер.
  3. В природе основными азотфиксаторами являются бактерии, особенно те из них, которые образуют симбиоз с корнями бобовых растений. Горох, фасоль, соя, клевер — все они относятся к данному типу. Благодаря симбиозу, они могут жить на очень бедных почвах, обогащая их. У этих растений есть механизм, который позволяет им совместно с клубеньковыми бактериями усваивать вещество из воздуха.

Для того чтобы понять, какие организмы принимают участие в круговороте азота, надо вспомнить класс биологии. Существуют важнейшие азотфиксаторы цианобактерии. Они играют важную роль в водных экосистемах. N2 также свободно фиксируется свободноживущими почвенными бактериями. При помощи специального фермента бактерии фиксируют атмосферный азот, синтезируя аммиак и нитраты. Получается взаимовыгодное существование. Микроорганизмы обеспечивают растения азотом, а растения питают бактерии сахарами.

Читайте также:
Наука - понятие и основы, виды и особенности классификации

Большинство видов растений получает нитраты из почвы. Растительные белки становятся частью травоядных животных, а затем хищников. В круговороте бактерии играют важнейшую роль, разлагая сложные азотсодержащие соединения, чтобы их усвоили растения. В условиях недостатка кислорода некоторые бактерии разлагают органические вещества до получения газообразного азота. Он возвращается в атмосферу и весь цикл повторяется вновь.

Атмосферные окисления

В результате природных процессов связывается от 100 до 150 млн тонн азота в год. Важнейшие пути естественного производства оксидов азота — это окислительные процессы при высоких температурах, которыми могут быть:

  • Высокие температуры лесных пожаров.
  • Окисления молекулярного азота (инертного в нормальных условиях) при извержениях вулканов.
  • Вспышки молний, ​​которые происходят около ста раз на планете каждую секунду. Электрический разряд нагревает атмосферу вокруг себя, азот соединяется с кислородом (происходит реакция горения) с образованием различных оксидов азота. Эта довольно зрелищная форма связывания охватывает только 10 млн тонн азота в год.

Главными продуктами таких процессов является оксид азота (NO) и диоксид азота (NO 2), а после дальнейших реакций — азотная кислота (HNO 3). Определенные концентрации оксидов азота приводят к формированию озона при помощи солнечного света и эмиссии углеводородов.

Этапы круговорота атмосферного азота

Для того чтобы кратко описать и понять этот процесс, нужно представить биосферу, как два соединяющихся сосуда разных размеров. В большом находится вещество из воздуха и воды, в маленьком — элементы, участвующие в жизнедеятельности организмов. В трубке, которая их соединяет — переходящий в разные состояния азот. Так в живой природе происходит его поступление в организм.

Процесс круговорота очень медленный. Он имеет определённую последовательность:

  • Поглощение вещества бактериями биосферы.
  • Переход из свободного состояния в связанный.
  • Усвоение растениями его соединений.
  • Поглощение элемента животными.
  • Восстановление концентрации микроорганизмами.

Азот Фиксация

Хотя азот составляет около 78% атмосферы Земли, его перенос в живой мир может стать проблемой. Растения и фитопланктон не могут использовать азот прямо из атмосферы. Они полагаются на микроорганизмы в почве, которые «фиксируют» азот, отбирая его из атмосферы и комбинируя его с водородом для производства аммиака. Затем бактерии превращают аммиак в другие органические соединения, которые поглощаются растениями и фитопланктоном на следующем этапе. Некоторые из этих бактерий живут в клубеньках на корнях растений, таких как люцерна и горох. Бактерии обменивают часть азота, который они производят с растениями, в обмен на углеводы.

Азот в живой природе

Роль азота в природе ещё не изучена до конца. Любая экологическая система усваивает небольшое количество вещества. Поэтому при производстве удобрений нарушается баланс между газом из органических соединений, вернувшимся в атмосферу, и элементами из воздушной среды.

Было отмечено, что его состояние может переходить из техногенного потока в природный. Лишнее количество газа накапливается в природе и вызывает отрицательные последствия. Выявлена закономерная связь между сельским хозяйством, например, применением различных добавок, и загрязнением окружающей среды.

Приблизительно 36% азота, который проникает в землю с удобрениями, просачивается в сточные воды. В них оказывается большое количество нитратов азота, которые, попадая в реки и озёра, вызывают усиленное размножение растений.

Этот процесс получил название эвтрофикация, то есть загрязнение водных ресурсов водорослями. Это одно из самых важных экологических последствий в применении этого вещества. Молекулы служат питательной средой для водяных растений. Путём накапливания они разрастаются очень быстро, затемняют водоём и не дают развиваться другим растениям. Со временем водоросли отмирают. Для их разложения необходимо очень большое количество воздуха.

Водный фонд становится бедным на наличие кислорода. Из неё уходят все возможные живые организмы, такие как ракообразные и рыба. Вода заболачиваются, превращаясь со временем в болото, и пересыхает.

Ещё одной причиной загрязнения являются фермы. Есть три фактора:

  1. Навоз оставляют на замёрзшей земле.
  2. Избыточное количество химических веществ.
  3. Не заделывают удобрения в почву.

При этом в воздух попадает аммиак. На расстоянии двух километров от ферм наблюдается его распространение и загрязнение воздуха. В результате близлежащие водоёмы оказываются загрязнены. Для предотвращения этого ниже по склону устраиваются пруды. А площадки откорма скота обязательно проектируются с учётом отметки грунтовых вод.

Последствием нарушения баланса азота в атмосфере является увеличение количества нитратов в продуктах питания. В культурах, которые выращивают в сельском хозяйстве, могут содержаться большие дозы нитратного азота. Его образование возможно при неправильной транспортировке, а также при помощи бактерий. При попадании в организм и взаимодействии с гемоглобином они нарушают проникновение кислорода в кровь. Это серьёзно отражается на здоровье человека.

Окислы также входят в состав азотного соединения. Соединения образуются и оказываются в атмосфере путём сжигания газа, выделяются при использовании автомобиля или турбинных самолётов. Они не причиняют вреда только в том случае, если не окисляются озоном до двуокиси азота. Нахождение большой концентрации в организме приводит к тяжёлым заболеваниям.

Для предотвращения чудовищных последствий этой проблемы необходимо тщательно изучать круговорот азота. Нужно найти способы соблюдения баланса между экосистемой и человеком. Можно заметить, что в современном мире при описании круговорота элементов возникают определённые затруднения, так как не все его процессы до конца изучены.

Круговорот кислорода

Запасы кислорода в биосфере очень большие, примерно 50% ее массы. В ней он самый распространенный элемент. Основное количество связанного кислорода приходится на гидросферу и литосферу. В песке его около 53%, глине 56%, воде — 89%. Свободный кислород содержится в атмосфере в количестве 1 200 000 млрд т, что составляет лишь 0,01% его общего количества. Большая часть атмосферного кислорода — продукт фотосинтеза растений.

Читайте также:
Биосфера - структура, границы, свойства, функции, строение

Схема круговорота кислорода: а) генерация растениями в процессе фотосинтеза (около 16 млрд т/год); б) потребление живыми организмами при дыхании; в) расход на окисление биогенного вещества.

Для высших форм жизни (растения, животные) пригодно аэробное дыхание — прямое окисление кислородом органики, например, глюкозы:

C6H12O6 + 6O2 — 6CO2 + 6H2O + 2880 кДж/моль. (1.4)

Большое количество энергии, которая выделяется при дыхании и окислении веществ в организме с участием кислорода, идет на поддержание жизнедеятельности высших организмов, которая требует значительных энергетических затрат, например, при перемещениях. Для низших организмов большое выделение тепла опасно. Они приспособились проводить окисление органики в анаэробных условиях (без О2) с помощью ферментов (см. выше).

Скорость круговорота кислорода в биосфере в нашу эпоху составляет около 2500 лет.

Небольшая часть кислорода постепенно уходит в осадочные породы: карбонаты, сульфаты. Однако эти процессы идут весьма медленно и в целом не влияют на главный круговорот атмосферного кислорода. Опасность представляет антропогенный фактор. Так, за последние 100 лет человеком при сжигании топлива изъято из атмосферы около 250 млрд т кислорода и добавлено около 380 млрд т СО2. Ежегодный прирост расхода кислорода человеком около 5%.

Влияние человека на круговорот

Деятельность людей имеет непосредственное отношение к этому. Промышленность является самым интенсивным вмешательством в этот процесс. Главным источником распространения лишнего объёма газа в атмосфере считается сельское хозяйство. Выращиваемые культуры поглощают множество питательных веществ, тем самым обедняя её. Картофель, свёкла, зерновые, каждый год потребляют до 200 кг вещества с одного гектара земли.

Если применение органических удобрений недостаточно или полностью отсутствуют бобовые растения, то при исчерпании резервных сил и вымывании полезных элементов из почвы ухудшается ее состояние и плодородие. И наоборот. Чрезмерное накопление удобрений приводит к увеличению количества вещества для наземных растений и уменьшению свободного азота, попадающего в атмосферу.

Круговорот воды

Воды на Земле много — 1,5 млрд км3, но пресных вод меньше 3%. Основная масса пресной воды — 29 млн км3 (75%) — находится в ледниках Арктики и Антарктиды, около 13 млн км3 — в атмосфере, 1 млн км3 — в живых организмах. Лишь всего 0,003% воды, т.е. около 0,04 млн км3, представляют объем ежегодно возобновляемых водных ресурсов.

Большой круговорот воды (40-45 тыс. км3)

  1. испарение воды в океанах и на суше под действием Солнца;
  2. перенос паров воды с воздушными массами;
  3. выпадение воды из атмосферы в виде дождя и снега;
  4. поглощение воды растениями и почвой,
  5. сток воды по поверхности суши и возвращение в моря и океаны. Этот круговорот воды хорошо замкнут. Он вместе с энергией Солнца является важнейшим фактором обеспечения жизни на Земле, так как при этом происходит перенос и перераспределение не только воды — основы жизни, но и тепла, поглощающегося при испарении воды и выделяющегося при ее конденсации.

Круговорот воды в экосистемах

Здесь различают 4 фазы:

  1. перехват, т.е. поглощение воды листьями, кроной, до того как она достигнет почвы;
  2. эвапотранспирация: (лат. evaporatio — испарение, transpirere — испарение растениями) — отдача воды экосистемой в атмосферу за счет ее биологического испарения растениями и испарения с поверхности почвы;
  3. инфильтрация — просачивание воды в почву, затем перенос грунтовых вод и испарение;
  4. сток — потеря воды экосистемой за счет ее стока в ручьи, реки и затем в моря, океаны.

Величина эвапотранспирации — это сумма биологической тран-спирации воды растениями и испарения ее с поверхности почвы. В Европе она оценивается как 3-7 тыс. т/га в год, из них около 1 тыс. т/га за год воды испаряется с поверхности почвы.

Велика биологическая транспирации воды растениями, что необходимо для извлечения питательных веществ и поддержания температурного режима тканей. Так, за день одна береза испаряет 75 л воды, бук — 100 л, липа — 200 л, 1 га леса — 50000 л.

Коэффициент транспирации — количество воды, транспирируемое растением в сезон для создания 1 кг сухого вещества. Он весьма велик и составляет от 300 до 1000 в зависимости от вида растения. Например, для получения 1 т зерна требуется от 250 до 550 т воды.

ассимиляция

Растения являются основными игроками в фазе ассимиляции азотного цикла. Они поглощают азот из почвы, поглощая через корневые волоски ионные формы нитритов, нитратов или аммония. Растения являются одним из основных продуктов питания для наземных животных и являются их основным источником азота. Животные усваивают азот из пищи, которую они едят, и используют его для производства молекул, которые необходимы для жизни, таких как аминокислоты.

Круговорот азота в природе и биосфере – схема с последовательностью

Нахождение азота в природе

Большая часть азота в природе находится в свободном состоянии. Он является главной составной частью воздуха (объемная доля – 78,9%, массовая доля – 75,6%). Содержание азота в земной коре – 10*-2% масс.

Рис. 1. Формула азота.

Из соединений азота большое значение имеет натриевая (чилийская) селитра NaNO3, образующая большие пласты на побережье Тихого океана в Чили. Калиевая (индийская) селитра KNO3 обнаружена в ряде районов Индии. Нитрат кальция Ca(NO3)2*nH2O (n=0-4), также встречающийся в природе, называют «норвежской» селитрой.

Рис. 2. Норвежская селитра.

Незначительные количества азота преимущественно в виде солей азотной кислоты содержит почва. Азот также входит в состав белковых веществ и многих естественных органических соединений.

Нахождение азота в природе во многом связано с жизнедеятельностью бактерий и водорослей, так как многие микроорганизмы извлекают азот из разлагающихся отходов

Значение и применение

Благодаря отсутствию токсичности и взрывоопасности, инертный газ применяется во многих сферах производства. Химическая промышленность синтезирует азот в аммиак, а также в минеральные удобрения. Свойства N2 применимы в следующих отраслях:

  • медицинской;
  • пищевой;
  • нефтегазовой;
  • химической.

Азотистые соединения применяются в качестве удобрений в сельском хозяйстве.

Выращивание различных культур в больших масштабах требует дополнительной подкормки почвы, поэтому в неё вносится определённое количество искусственных нитратов, синтезированных из азота. Однако значительная часть связанного элемента появляется в грунте естественным путём.

Читайте также:
Гранит камень - описание, свойства, состав, текстура

Как происходит круговорот азота в природе

При гниении органических веществ значительная часть содержащегося в них азота превращается в аммиак, который под влиянием нитрифицирующих бактерий окисляется в азотную кислоту. Последняя, вступая в реакцию с находящимися в почве карбонатами, образует нитраты. Однако некоторая часть азота при гниении выделяется в атмосферу в свободном виде. Свободный азот выделяется также при горении органических веществ, при сжигании дров, каменного угля, торфа. Денитрифицирующие бактерии при недостаточном доступе воздуха могут отнимать кислород от нитратов, при этом образуется свободный азот. источником пополнения минеральных азотных соединений являются происходящие в атмосфере электрические разряды, образующие оксиды азота (последние при взаимодействии с водой дают азотную кислоту, превращающуюся в почве в нитраты), и жизнедеятельность азотобактерий, усваивающих атмосферный азот и перерабатывающих его в азотные соединения.

Рис. 3. Схема круговорота азота в природе.

Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, вызывая характерные вздутия – «клубеньки», поэтому они и получили названия клубеньковых бактерий

При уборке урожая с полей выносится значительная часть азота. Эту убыль восполняют внесением удобрений, содержащих азот.

Описание процесса

Оборот N2 представляет собой цепочку связанных между собой замкнутых каналов, через которые осуществляется циркуляция элемента в биологической оболочке планеты.

Находящийся в атмосфере инертный газ нитроген является стойким молекулярным соединением.

Последовательность этапов круговорота атмосферного азота происходит в результате различных процессов, способствующих связыванию его молекул.

Фиксация N2 осуществляется под воздействием трёх факторов:

  1. Микроорганизмы — основной поставщик азота. Их жизнедеятельность превращает нитроген в связанное состояние, в котором он используется живой природой.
  2. Электрические разряды, производимые молниями. Во время грозы происходит расщепление молекул и соединение их с кислородом. Полученный оксид вместе с дождевой водой попадает в грунт и поглощается корнями растений.
  3. Хозяйственная деятельность человека. Создание и применение удобрений, содержащих нитраты, способствуют образованию и попаданию нитрогена в биосферу.

Связывание элемента начинается в водных и почвенных экологических системах с помощью различных бактерий. Они выделяют специальный фермент, фиксирующий атмосферный N2, в результате чего происходит его превращение в нитрат и аммоний. Образовавшиеся соединения питают растительность, а она обеспечивает микроорганизмы углеводами.

Растительность в виде белков попадает в организм травоядных животных, а от них к хищникам. После гибели организма элемент вновь проникает в почву, повторяя цикл азота в биосфере. При этом часть N2 высвобождается под воздействием бактерий, а другая остаётся в составе неорганических веществ. Этот процесс занимает длительный отрезок времени и выглядит следующим образом:

  • поглощение и переработка микроорганизмами;
  • переход в связанное состояние;
  • усвоение растительностью:
  • попадание в организм травоядных животных;
  • денитрификация элемента бактериями.

Движение нитрогена в природе можно представить в виде постоянного перехода через 2 резервуара, имеющих разный объём и соединённых узким каналом. В большой ёмкости находится атмосферный N2, а в малой — связанный различными процессами элемент.

Таким образом, круговорот азота в биосфере кратко характеризуется его непрерывным перемещением из неживой природы в живую. Пройдя все этапы, элемент возвращается в атмосферу.

Влияние человеческой деятельности

Сжигание торфа, дров, каменного угля, производство минеральных удобрений из азота, высвобождает большое количество элемента. Это приводит к нарушению баланса между ним и находящимся в атмосфере нитрогеном. Происходит накопление излишков N2, загрязняющих окружающую среду.

Через обогащённую удобрениями почву азот переносится сточными водами в крупные водоёмы, что вызывает усиленный рост и распространение водорослей. Водяные растения поглощают кислород и постепенно вытесняют другие формы жизни. В результате происходит заболачивание и пересыхание водоёма.

Сельскохозяйственная деятельность человека является одной из главных причин нарушения экологии. В тех районах, где расположены пастбища и животноводческие фермы, отмечается повышенный уровень аммиака в воздухе, а в почве — избыток химических элементов и продуктов жизнедеятельности животных.

Загрязнение окружающей природы пагубно сказывается на здоровье всех живых организмов, а полное исчезновение некоторых из них может привести к экологической катастрофе. Чтобы этого не случилось, человечеству необходимо тщательное изучение движения азота в экосистеме.

Биогеохимический круговорот фосфора. Антропогенное вмешательство в естественный круговорот азота.

Биогеохимический цикл фосфора.

Круговорот фосфора в природе сильно отличается от биогеохимических циклов углерода, кислорода, азота и серы, так как газовая форма соединений фосфора (например РН3) практически не участвует в биогеохимическом цикле фосфора. То есть фосфор к накоплению в атмосфере вообще не способен. Поэтому роль «резервуара» фосфора, из которого этот элемент извлекается и используется в биологическом круговороте, так же как и для серы, играет литосфера.

Фосфор в литосфере содержится в форме фосфатных соединений (солей фосфорной кислоты). Основная доля среди них приходится на фосфат кальция – апатит. Это полигенный минерал, образующийся в различных природных процессах – как в глубинных, так и в гипергенных (в том числе и биогенных). Фосфатные соединения способны растворяться в воде, и фосфор в составе иона РО43- может мигрировать в водных растворах. Из них фосфор и усваивается растениями.

Индекс биогенного обогащения почв по отношению к земной коре, а растений по отношению к почвам составляет для фосфора, так же, как и для азота 1000 и 10000 соответственно (Ковда, 1985). Для растений наиболее доступным является фосфор неспецифических органических соединений и гумуса и именно он играет главную роль в малом (локальном) биологическом цикле фосфора.

Животные являются еще большими концентраторами фосфора, чем растения. Многие из них накапливают фосфор в составе тканей мозга, скелета, панцирей.. Есть несколько способов усвоения фосфора организмами-консументами. Во-первых, прямое усвоение из растений в процессе питания. Во-вторых, водные организмы-фильтраторы извлекают фосфор из органических взвесей. В-третьих, органические соединения фосфора усваиваются организмами-илоедами при переработке ими биогенных илов.

Читайте также:
Доклад на тему: Естественная и научная картина мира структура

Возврат фосфора в окружающую среду происходит при разложении органического вещества. Но возврат этот оказывается далеко не полным. В целом для соединений фосфора характерна тенденция выноса в форме водных растворов и взвесей в конечные водоёмы стока, в наибольшей мере – в Мировой Океан, где он и накапливается в составе осадочных отложений различного генезиса. Вновь вернуться в экзогенный круговорот эта часть фосфора может только в результате тектонических процессов, растягивающихся на сотни миллионов лет. В естественных условиях сохранение баланса обеспечивается сравнительно слабой подвижностью соединений фосфора, в результате которой фосфор, извлечённый растениями из почвы, большей частью возвращается в неё в результате разложения органического вещества. В почвах и породах фосфор достаточно легко фиксируется. Фиксаторами фосфора являются гидроксиды железа, марганца, алюминия, глинистые минералы (особенно, минералы группы каолинита). Однако, фиксированный фосфор может быть на 40-50% десорбирован и использован растениями. Этот процесс зависит от рН и Eh условий среды. Повышенная кислотность, образование угольной кислоты, способствуют десорбции фосфора, усилению миграции фосфорных соединений.

В восстановительной среде образуются соединения фосфора с двухвалентным железом, что тоже способствует выносу фосфора из почвы.

Миграция фосфора возможна и за счет водной и ветровой эрозии. Поэтому биогеохимический цикл фосфора значительно менее замкнут и менее обратим, чем циклы углерода и азота, а загрязнение фосфором окружающей среды особенно опасно

Основными особенностями круговорота фосфора, таким образом, являются:

· отсутствие атмосферного переноса;

· наличие единственного источника – литосферы;

· тенденция к накоплению в конечных водоёмах стока.

При интенсивной сельскохозяйственной эксплуатации земель потери фосфора в ландшафте становятся практически необратимыми. Компенсация возможна только за счёт применения фосфорных удобрений. Известно, что фосфорные удобрения являются важным и необходимым звеном в получении высоких урожаев сельскохозяйственных культур. Однако, все известные запасы месторождений фосфатов ограничены и по предсказаниям ученых могут истощиться уже в ближайшие 75-100 лет. В то же время, вредные соединения фосфатов в последнее время становятся одним из важнейших факторов загрязнения речных и озерных вод.

Таким образом, в последе время общая картина распределения им миграции фосфора в биосфере резко нарушена человеком. Вот слагаемые этого явления: во-первых, мобилизация фосфора из агроруд и шлаков, производство и применение фосфорных удобрений, во-вторых производство фосфорсодержащих препаратов и их использование в быту; в-третьих – производство фосфорсодержащих ресурсов продовольствия и кормов, вывоз и потребление их в зонах концентрации населения; в-четвертых – развитие рыбного промысла, добыча морских моллюсков и водорослей, что влечет за собой перераспределение фосфора из океана на сушу. В итоге наблюдается процесс фосфатизации суши, но процесс этот проявляется крайне неравномерно. Увеличивается содержание фосфора в окружающей среде больших городов. Напротив, страны, активно экспортирующие органические продукты и не применяющие фосфорных удобрений, теряют запасы фосфора в своих почвах.

Круговорот азота в природе: схема, описание, последовательность, значение и факты

Азот – один из жизненно важных элементов. Азот не фиксируется в организме в свободном виде. Поэтому в круговороте азота в природе помогают бактерии.

Значение круговорота Nдля биосферы

Для того чтобы дать описание и схему круговорота азота в природе, нужно помнить, что этот элемент — важная часть белков и ДНК. Без него жизни, какой её знает человечество, могло и не быть. Но биологические существа способны усвоить его только в определённом виде. В результате различных геологических процессов этот элемент принимает ту форму, которой могут воспользоваться организмы. Обмен элементами между живыми существами, воздухом, водой и земной корой получил название биогеохимических циклов.

Таким образом, микроэлементы, являющиеся частью биологического организма, возвращаются в природу. В этом процессе частицы постоянно перемещаются между воздухом, водой и живыми организмами, в противном случае жизнь давно бы истратила свои ресурсы.

N2 входит в состав всего живого. Это один из самых популярных в природе элементов. Атмосфера земли на 78% состоит из N2. Он также содержится в воде и почве и входит в состав белков.

Этот элемент включается в синтез важнейших органических молекул, белков и нуклеиновых кислот. Азот в виде газа, содержащийся в атмосфере, довольно инертен и немногие организмы способны получать его из воздуха. Растения могут поглощать лишь связанный микроэлемент, то есть в составе химических соединений.

Молекулярный азот — очень стойкое соединение. Для его разрушения необходимо большое количество энергии.

Связывание или фиксация происходит тремя способами:

  • За счёт электрических разрядов молний. Они расщепляют молекулы, позволяя вступать в соединения с кислородом. Образованный таким способом оксид азота растворяется в дождевой воде и поступает в почву, откуда его поглощают растения. Именно вспышки молний играют важную роль в развитии жизни на нашей планете.
  • Человек — ещё один источник. Человеческая деятельность значительно увеличила его количество в природе. Сегодня треть этого связанного азота попадает в биосферу, благодаря широкому применению искусственных удобрений, содержащих нитраты. В промышленности связывание этого элемента с водородом происходит при температуре от 400 до 600 градусов по Цельсию и давлении до 1 тысячи атмосфер.
  • В природе основными азотфиксаторами являются бактерии, особенно те из них, которые образуют симбиоз с корнями бобовых растений. Горох, фасоль, соя, клевер — все они относятся к данному типу. Благодаря симбиозу, они могут жить на очень бедных почвах, обогащая их. У этих растений есть механизм, который позволяет им совместно с клубеньковыми бактериями усваивать вещество из воздуха.

Для того чтобы понять, какие организмы принимают участие в круговороте азота, надо вспомнить класс биологии. Существуют важнейшие азотфиксаторы цианобактерии. Они играют важную роль в водных экосистемах. N2 также свободно фиксируется свободноживущими почвенными бактериями. При помощи специального фермента бактерии фиксируют атмосферный азот, синтезируя аммиак и нитраты. Получается взаимовыгодное существование. Микроорганизмы обеспечивают растения азотом, а растения питают бактерии сахарами.

Читайте также:
Вселенная: как зародилась, строение, из чего состоит, методы изучения

Большинство видов растений получает нитраты из почвы. Растительные белки становятся частью травоядных животных, а затем хищников. В круговороте бактерии играют важнейшую роль, разлагая сложные азотсодержащие соединения, чтобы их усвоили растения. В условиях недостатка кислорода некоторые бактерии разлагают органические вещества до получения газообразного азота. Он возвращается в атмосферу и весь цикл повторяется вновь.

Описание процесса

Оборот N2 представляет собой цепочку связанных между собой замкнутых каналов, через которые осуществляется циркуляция элемента в биологической оболочке планеты.

Находящийся в атмосфере инертный газ нитроген является стойким молекулярным соединением.

Последовательность этапов круговорота атмосферного азота происходит в результате различных процессов, способствующих связыванию его молекул.

Фиксация N2 осуществляется под воздействием трёх факторов:

  • Микроорганизмы — основной поставщик азота. Их жизнедеятельность превращает нитроген в связанное состояние, в котором он используется живой природой.
  • Электрические разряды, производимые молниями. Во время грозы происходит расщепление молекул и соединение их с кислородом. Полученный оксид вместе с дождевой водой попадает в грунт и поглощается корнями растений.
  • Хозяйственная деятельность человека. Создание и применение удобрений, содержащих нитраты, способствуют образованию и попаданию нитрогена в биосферу.

Связывание элемента начинается в водных и почвенных экологических системах с помощью различных бактерий. Они выделяют специальный фермент, фиксирующий атмосферный N2, в результате чего происходит его превращение в нитрат и аммоний. Образовавшиеся соединения питают растительность, а она обеспечивает микроорганизмы углеводами.

Растительность в виде белков попадает в организм травоядных животных, а от них к хищникам. После гибели организма элемент вновь проникает в почву, повторяя цикл азота в биосфере. При этом часть N2 высвобождается под воздействием бактерий, а другая остаётся в составе неорганических веществ. Этот процесс занимает длительный отрезок времени и выглядит следующим образом:

  • поглощение и переработка микроорганизмами;
  • переход в связанное состояние;
  • усвоение растительностью:
  • попадание в организм травоядных животных;
  • денитрификация элемента бактериями.

Движение нитрогена в природе можно представить в виде постоянного перехода через 2 резервуара, имеющих разный объём и соединённых узким каналом. В большой ёмкости находится атмосферный N2, а в малой — связанный различными процессами элемент.

Таким образом, круговорот азота в биосфере кратко характеризуется его непрерывным перемещением из неживой природы в живую. Пройдя все этапы, элемент возвращается в атмосферу.

Значение и применение

Благодаря отсутствию токсичности и взрывоопасности, инертный газ применяется во многих сферах производства. Химическая промышленность синтезирует азот в аммиак, а также в минеральные удобрения. Свойства N2 применимы в следующих отраслях:

  • медицинской;
  • пищевой;
  • нефтегазовой;
  • химической.

Азотистые соединения применяются в качестве удобрений в сельском хозяйстве.

Выращивание различных культур в больших масштабах требует дополнительной подкормки почвы, поэтому в неё вносится определённое количество искусственных нитратов, синтезированных из азота. Однако значительная часть связанного элемента появляется в грунте естественным путём.

Влияние человеческой деятельности

Сжигание торфа, дров, каменного угля, производство минеральных удобрений из азота, высвобождает большое количество элемента. Это приводит к нарушению баланса между ним и находящимся в атмосфере нитрогеном. Происходит накопление излишков N2, загрязняющих окружающую среду.

Через обогащённую удобрениями почву азот переносится сточными водами в крупные водоёмы, что вызывает усиленный рост и распространение водорослей. Водяные растения поглощают кислород и постепенно вытесняют другие формы жизни. В результате происходит заболачивание и пересыхание водоёма.

Сельскохозяйственная деятельность человека является одной из главных причин нарушения экологии. В тех районах, где расположены пастбища и животноводческие фермы, отмечается повышенный уровень аммиака в воздухе, а в почве — избыток химических элементов и продуктов жизнедеятельности животных.

Загрязнение окружающей природы пагубно сказывается на здоровье всех живых организмов, а полное исчезновение некоторых из них может привести к экологической катастрофе. Чтобы этого не случилось, человечеству необходимо тщательное изучение движения азота в экосистеме.

Общее описание

Азот – седьмой элемент периодической таблицы Менделеева. Проявляет две валентности – III и V. В природе это двухатомный газ (N2), плохо растворимый в воде. За счёт прочной тройной связи между атомами азот является малоактивным веществом, вступающим в реакции только при нагревании или под действием катализатора.

Рис. 1. Строение молекулы азота.

Элемент присутствует в почве, воде, живых организмах в составе сложных веществ. Свободный азот относительно стабилен в атмосфере, его содержание – 78 % от общего объёма газов. Азот может принимать жидкую и твёрдую формы.

Элемент входит в состав аминокислот и белков, нуклеиновых кислот. Без азота невозможно построение ДНК.

Как происходит круговорот

Круговорот азота в природе, по сути, является цепочкой замкнутых взаимосвязанных путей, которыми азот циркулирует в биосфере Земли. В природе основным поставщиком этого связанного элемента выступают различные микроорганизмы. Именно благодаря микроскопическим труженикам от 90 до 140 млн. тонн иона азота переходит в нужное для биосферы состояние.

Нахождение азота в природе во многом связано с жизнедеятельностью бактерий и водорослей. Круговорот N2 в природе берет свое начало в деятельности различных микроорганизмов, которые извлекают азот из разлагающихся отходов. Одна часть элемента преобразуется в молекулы, необходимые для существования этих микроорганизмов. Другая часть высвобождается в виде ионов аммония и молекул аммиака. Различные разновидности бактерий переводят азот из этих веществ в форму нитратов. Азотистые соединения в виде удобрения усваиваются растениями, а через них и животными. После смерти организма микроэлемент возвращается в почву, чтобы заново совершить круговорот азота в природе. Схема движения азота представлена ниже.

Во время совершения круговорота N2 может включаться в состав неорганических отложений или высвобождаться в результате деятельности некоторых бактерий. Кроме этого, извержения вулканов, работа гейзеров увеличивают долю этого вещества в земной атмосфере.

Читайте также:
Парниковый эффект - виды, причины, суть, последствия, схема

Применение азота в сельском хозяйстве

Удобряя землю азотистыми соединениями из расчета — килограмм удобрений на гектар земли, можно повысить урожайность зерновых культур на несколько процентов.
В сельском хозяйстве в виде урожая азот выносится в количестве 1 млн. тонн, при этом азотистых удобрений используется в два раза меньше. Несмотря на высокую рентабельность использования минеральных удобрений, потребности растений в этом веществе покрываются искусственным путем всего на 20-25%. Остальное его количество извлекается из грунта за счет биологической фиксации (естественные удобрения). Дальнейшее повышение урожайности будет зависеть лишь от рационального применения навоза, наращивания производства минеральных удобрений и эффективного использования «биологического» (произведенного микроорганизмами) связанного азота.

Тест по теме

Чтобы попасть сюда — пройдите тест.

Круговорот азота в природе

Азот непрерывно циркулирует в земной биосфере под влиянием различных химических и нехимических процессов, причем в последнее время связанный азот попадает в атмосферу в основном благодаря деятельности человека.

Азот — одно из самых распространенных веществ в биосфере, узкой оболочке Земли, где поддерживается жизнь. Так, почти 80% воздуха, которым мы дышим, состоит из этого элемента. Основная часть атмосферного азота находится в свободной форме (см. Химические связи), при которой два атома азота соединены вместе, образуя молекулу азота — N2. Из-за того, что связи между двумя атомами очень прочные, живые организмы не способны напрямую использовать молекулярный азот — его сначала необходимо перевести в «связанное» состояние. В процессе связывания молекулы азота расщепляются, давая возможность отдельным атомам азота участвовать в химических реакциях с другими атомами, например с кислородом, и таким образом мешая им вновь объединиться в молекулу азота. Связь между атомами азота и другими атомами достаточно слабая, что позволяет живым организмам усваивать атомы азота. Поэтому связывание азота — чрезвычайно важная часть жизненных процессов на нашей планете.

Круговорот азота представляет собой ряд замкнутых взаимосвязанных путей, по которым азот циркулирует в земной биосфере. Рассмотрим сначала процесс разложения органических веществ в почве. Различные микроорганизмы извлекают азот из разлагающихся материалов и переводят его в молекулы, необходимые им для обмена веществ. При этом оставшийся азот высвобождается в виде аммиака (NH3) или ионов аммония (NH4 + ). Затем другие микроорганизмы связывают этот азот, переводя его обычно в форму нитратов (NO3 – ). Поступая в растения (и в конечном счете попадая в организмы живых существ), этот азот участвует в образовании биологических молекул. После гибели организма азот возвращается в почву, и цикл начинается снова. Во время этого цикла возможны как потери азота — когда он включается в состав отложений или высвобождается в процессе жизнедеятельности некоторых бактерий (так называемых денитрифицирующих бактерий), — так и компенсация этих потерь за счет извержения вулканов и других видов геологической активности.

Представьте себе, что биосфера состоит из двух сообщающихся резервуаров с азотом — огромного (в нем находится азот, содержащийся в атмосфере и океанах) и совсем маленького (в нем находится азот, содержащийся в живых существах). Между этими резервуарами есть узкий проход, в котором азот тем или иным способом связывается. В нормальных условиях азот из окружающей среды попадает через этот проход в биологические системы и возвращается в окружающую среду после гибели биологических систем.

Приведем несколько цифр. В атмосфере азота содержится примерно 4 квадрильона (4·10 15 ) тонн, а в океанах — около 20 триллионов (20·10 12 ) тонн. Незначительная часть этого количества — около 100 миллионов тонн — ежегодно связывается и включается в состав живых организмов. Из этих 100 миллионов тонн связанного азота только 4 миллиона тонн содержится в тканях растений и животных — все остальное накапливается в разлагающих микроорганизмах и в конце концов возвращается в атмосферу.

Главный поставщик связанного азота в природе — бактерии: благодаря им связывается приблизительно от 90 до 140 миллионов тонн азота (точных цифр, к сожалению, нет). Самые известные бактерии, связывающие азот, находятся в клубеньках бобовых растений. На их использовании основан традиционный метод повышения плодородия почвы: на поле сначала выращивают горох или другие бобовые культуры, потом их запахивают в землю, и накопленный в их клубеньках связанный азот переходит в почву. Затем поле засевают другими культурами, которые этот азот уже могут использовать для своего роста.

Некоторое количество азота переводится в связанное состояние во время грозы. Вы удивитесь, но вспышки молний происходят гораздо чаще, чем вы думаете, — порядка ста молний каждую секунду. Пока вы читали этот абзац, во всем мире сверкнуло примерно 500 молний. Электрический разряд нагревает атмосферу вокруг себя, азот соединяется с кислородом (происходит реакция горения) с образованием различных оксидов азота. И хотя это довольно зрелищная форма связывания, она охватывает только 10 миллионов тонн азота в год.

Таким образом, в результате естественных природных процессов связывается от 100 до 150 миллионов тонн азота год. В ходе человеческой деятельности тоже происходит связывание азота и перенос его в биосферу (например, все то же засевание полей бобовыми культурами приводит ежегодно к образованию 40 миллионов тонн связанного азота). Более того, при сгорании ископаемого топлива в электрогенераторах и в двигателях внутреннего сгорания происходит разогрев воздуха, как и в случае с разрядом молнии. Всякий раз, когда вы совершаете поездку на автомобиле, в биосферу поступает дополнительное количество связанного азота. Примерно 20 миллионов тонн азота в год связывается при сжигании природного топлива.

Но больше всего связанного азота человек производит в виде минеральных удобрений. Как это часто бывает с достижениями технического прогресса, технологией связывания азота в промышленных масштабах мы обязаны военным. В Германии перед Первой мировой войной был разработан способ получения аммиака (одна из форм связанного азота) для нужд военной промышленности. Недостаток азота часто сдерживает рост растений, и фермеры для повышения урожайности покупают искусственно связанный азот в виде минеральных удобрений. Сейчас для сельского хозяйства каждый год производится чуть больше 80 миллионов тонн связанного азота (заметим, что он употребляется не только для выращивания пищевых культур — пригородные лужайки и сады удобряют им же).

Читайте также:
Экологические факторы - влияние на живые организмы

Суммировав весь вклад человека в круговорот азота, получаем цифру порядка 140 миллионов тонн в год. Примерно столько же азота связывается в природе естественным образом. Таким образом, за сравнительно короткий период времени человек стал оказывать существенное влияние на круговорот азота в природе. Каковы будут последствия? Каждая экосистема способна усвоить определенное количество азота, и в последствия этого в целом благоприятны — растения станут расти быстрее. Однако при насыщении экосистемы азот начнет вымываться в реки. Эвтрофикация (загрязнение водоемов водорослями) озер — пожалуй, самая неприятная экологическая проблема, связанная с азотом. Азот удобряет озерные водоросли, и они разрастаются, вытесняя все другие формы жизни в этом озере, поскольку, когда водоросли погибают, на их разложение расходуется почти весь растворенный в воде кислород.

Тем не менее приходится признать, что видоизменение круговорота азота — еще далеко не худшая проблема из тех, с которыми столкнулось человечество. В связи с этим можно привести слова Питера Витошека, эколога из Стэнфордского университета, изучающего растения: «Мы движемся к зеленому и заросшему сорняками миру, но это не катастрофа. Очень важно уметь отличить катастрофу от деградации».

Круговорот азота

Рис. Круговорот азота в биосфере

Круговорот азота охватывает все области биосферы. Поглощение его растениями ограничено, так как они усваивают азот только в форме соединения его с водородом и кислородом (N0 3- и NH4). И это при том, что запасы азота в атмосфере неисчерпаемы (78% от ее объема). Редуценты (деструкторы), а точнее поч­венные бактерии, постепенно разлагают белковые вещества отмерших организмов и превращают их в ам­монийные соединения, нитраты и нитриты. Часть нит­ратов попадает в процессе круговорота в подземные воды и загрязняет их.

Азот возвращается в атмосферу вновь с выделен­ными при гниении газами. Правда, часть его окисля­ется в воздухе — во время грозовых разрядов — и поступает в почву с дождевой водой, но таким спо­собом его фиксируется в 10 раз меньше, чем с помо­щью бактерий.

Вмешательство человека в круговорот азота состоит в следующем:

при сжигании ископаемого топлива в атмосферу выбрасываются большие количества оксида азота (NO). Оксид азота затем соединяется в атмосфере с кислородом и образуется диоксид азота (NO2),который при взаимодействии с водяным паром может образовывать азотную кислоту (HNO3). Эта кислота становится компонентом кислотных осадков.

использование удобрений приводит к выделению в атмосферу «парникового газа» закиси азота (N2O)

увеличение количества нитратов и ионов аммония в водных экосистемах при смыве с удобрений с полей. Избыток питательных веществ приводит к быстрому росту водорослей, при разложении которых расходуется растворенный кислород, что приводит к массовым морам рыб.

Биохимические циклы фосфора и серы намного менее совершенны, т.К. Их основная масса содержится в резервном фонде земной коры, в «недоступном» резерве.

Круговорот серы и фосфора – это типичный осадочный биогеохимический цикл. Такие циклы легко нарушаются от различного рода воздействий и часть обмениваемого материала выходит из круговорота. Возвратиться снова в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом биофильных компонентов.

Круговорот фосфора

Рис. Круговорот фосфора в биосфере

Фосфор, главным образом в виде фосфат-ионов (РО 3- и НРО4 2- ), является важным питательным элементом как для растений, так и для животных. Он входит в со­став молекул ДНК, несущих генетическую информацию; молекул АТФ и АДФ, в которых запасается необходи­мая для организмов химическая энергия, используемая при клеточном дыхании; молекул жиров, образующих клеточные мембраны в растительных и животных клет­ках; а также веществ, входящих в состав костей и зу­бов.

Фосфор содержится в горных породах, образовавшихся в прошлые геологические эпохи. В биогеохимический круговорот он может попасть в случае подъема этих пород из глубины земной коры на поверхность суши, в зону выветривания. Эрозионными процессами он выносится в море в виде широко известного минерала – апатита.

Общий круговорот фосфора можно разделить на две части — водную и наземную.

В наземных экосистемах фос­фор, высвобождаемый при медленном разрушении (или выветривании) фосфатных руд, растворяется почвенной влагой и поглощается корнями растений.

Животные получают необходимый им фосфор, поедая растения или других растительноядных животных. Значительная часть этого фосфора в виде экскремен­тов животных и продуктов разложения мертвых жи­вотных и растений возвращается в почву, с эрозией – в реки, и, в конце концов, на дно океана в виде нерастворимых фосфатных осадочных пород.

В водных экосистемах фосфор усваивается фитопланктоном и передается по трофической цепи вплоть до консументов третьего порядка – морских птиц. Их экскременты (гуано) снова попадают в море и вступают в круговорот, либо накапливаются на берегу и смываются в море. Т.о., часть фосфора возвращается на поверхность суши в виде гуано — обогащенной фосфором органической массы экскрементов питающихся рыбой птиц (пели­канов, олушей, бакланов и т. п.). Однако несравнимо большее количество фосфатов ежегодно смывается с поверхности суши в океан в результате природных процессов и антропогенной деятельности.

Вмешатель­ство человека в круговорот фосфора сводится в основ­ном к двум вариантам:

добыча больших количеств фосфатных руд для производства минеральных удобрений и моющих средств;

увеличение избытка фосфат-ионов в водных эко­системах при попадании в них загрязненных стоков с животноводческих ферм, смытых с полей фосфатных удобрений, а также очищенных и неочищенных ком­мунально-бытовых стоков. Избыток этих элементов способствует «взрывному» росту сине-зеленых водорослей и других водных растений, что нарушает жизненное равновесие в водных экосистемах.

Читайте также:
Пищевая цепочка в природе - цепь питания тайги, тундры

Круговорот серы

Сера также имеет основной резервный фонд в отложениях и почве, но в отличие от фосфора имеет резервный фонд и в атмосфере.

В обменном фонде главная роль принадлежит микроорганизмам. Одни из них восстановители, другие – окислители.

В горных породах сера встречается в виде сульфидов (FeS2 и др.), в растворах – в форме иона (SO 4 -2), в газообразной фазе – в виде сероводорода (H2S) или сернистого газа (SO2). В некоторых организмах сера накапливается в чистом виде (S2) и при их отмирании на дне морей образуются залежи самородной серы.

В морской среде сульфат-ион занимает второе место по содержанию после хлора и является основной доступной формой серы, которая восстанавливается автотрофами и включается в состав аминокислот.

Круговорот серы, хотя ее требуется организмам в небольших количествах, является ключевым в общем процессе продукции и разложения.

В наземных экосистемах сера возвращается в почву при отмирании растений, захватывается микроорганизмами, которые восстанавливают ее до H2S. Другие организмы и воздействие самого кислорода приводят к окислению этих продуктов. Образовавшиеся сульфаты растворяются и поглощаются растениями из поровых растворов почвы – так продолжается круговорот.

Круговорот серы, так же как и азота, может быть нарушен вмешательством человека. Виной тому прежде всего сжигание ископаемого топлива, а особенно угля. Сернистый газ (SO2) нарушает процессы фотосинтеза и приводит к гибели растительности.

При нарушении биогеохимических циклов человеком круговорот веществ становится не циклическим, а ациклическим. Охрана природных ресурсов должна быть в частности направлена на то, чтобы ациклические биогеохимические процессы превратить в циклические.

Роль биосферы в круговороте азота.

Общее описание

Азот – седьмой элемент периодической таблицы Менделеева. Проявляет две валентности – III и V. В природе это двухатомный газ (N2), плохо растворимый в воде. За счёт прочной тройной связи между атомами азот является малоактивным веществом, вступающим в реакции только при нагревании или под действием катализатора.

Рис. 1. Строение молекулы азота.

Элемент присутствует в почве, воде, живых организмах в составе сложных веществ. Свободный азот относительно стабилен в атмосфере, его содержание – 78 % от общего объёма газов. Азот может принимать жидкую и твёрдую формы.

Элемент входит в состав аминокислот и белков, нуклеиновых кислот. Без азота невозможно построение ДНК.

Этапы круговорота в природе

Вы окружены азотом! Фактически, 78% воздуха, которым вы дышите — это азот, но как он из воздуха попадает в ваш бутерброд? Хороший вопрос! Вот последовательность этапов, которые атом азота совершает в своем путешествии по азотному циклу:

1 Начнем с воздуха, которым вы дышите. Когда азот находится в воздухе, он называется атмосферным азотом и поступает в виде N2 (молекула азота из двух атомов). Растения мало что могут сделать с атмосферным азотом. Но в почве есть микроорганизмы-азотфиксаторы, которые могут преобразовывать азот в пригодную для использования растениями форму с помощью процесса, называемого азотфиксацией. Давайте рассмотрим, как происходит фиксация азота:

  • Атмосферный азот проникает в почву, где азотфиксирующие бактерии на корнях некоторых растений превращают его в аммоний (азот, присоединенный к атомам водорода, NH4+). Есть некоторые свободноживущие бактерии (не на корнях растений), которые также являются фиксаторами азота.
  • Молния может превращать атмосферный азот в оксиды азота, другой тип азота, связанный с атомами кислорода. Это составляет лишь небольшой процент азотфиксации.

2 Бактерии и археи в почве превращают аммоний в нитриты (NO2-), а затем в нитраты (NO3-) посредством нитрификации, которая, по сути, заключается в том, что бактерии превращают аммоний в нитраты. Нитраты — это азот, присоединенный к атомам кислорода.

3 Теперь, когда атмосферный азот был заменен на нитраты, давайте посмотрим, что будет дальше. Ассимиляция — это когда растения используют азот для самых разных целей, таких как строительство листьев или создание ДНК (дезоксирибонуклеиновая кислота). Животные и другие организмы поедают растения, и азот также попадает в их тела.

4 В конце концов растения, животные и другие организмы умирают и разлагаются, высвобождая азот обратно в почву. Бактерии и грибы помогают расщеплять мертвые организмы, а в результате аммонификации азот снова превращается в аммоний. Аммоний опять превращается в нитриты и нитраты бактериями (мы снова возвращаетесь к шагу 2).

5 Специальные бактерии могут превращать нитраты обратно в атмосферный азот посредством процесса, называемого денитрификацией, когда азот из почвы снова попадает в атмосферу. И вы снова на шаге 1!

Так как же атомы азота попали в ваш бутерброд с индейкой? Азот из воздуха был превращен в азот, который могли использовать растения, например салат и помидоры на вашем бутерброде. Однажды индейка съела несколько растений, и азот попал в ее тело. Но до того, как все это произошло, тот же самый атом азота был съеден коровой и возвращен в почву виде фекалий, где его использовали растения, которые съела индейка!

Круговорот

Схему круговорота азота в природе условно можно разделить на две части – грунтовую и атмосферную. Круговорот азота через почву осуществляется следующим образом:

  • в результате гниения органических веществ (растений, животных) азот превращается в аммиак (NH3);
  • под действием бактерий аммиак окисляется до азотной кислоты (HNO3);
  • азотная кислота вступает в реакцию с элементами почвы, образуя кислые соли (нитраты) – СаСО3, Ca(NO3)2;
  • нитраты поглощают растения.

В атмосферу азот также попадает в результате гниения или при горении органических веществ, например, дров или торфа. Под действием разрядов молнии азот соединяется с кислородом, образуя оксид азота (II) – NO, а затем оксид азота (IV) – NO2.

Оксиды реагируют с водой, образуя азотную кислоту. Она попадает в почву вместе с дождями, где образуются нитраты.

Кроме того, свободный азот способны усваивать азотфиксирующие бактерии и некоторые виды сине-зеленых водорослей. Азотфиксирующие бактерии (азотфиксаторы) находятся в симбиозе с растениями. Например, клубеньковые бактерии живут на корнях бобовых растений. Азотфиксаторы могут усваивать азот в присутствии или в отсутствии кислорода, т.е. могут являться аэробами или анаэробами. Они также синтезируют нитраты.

Читайте также:
Наука - понятие и основы, виды и особенности классификации

Рис. 2. Азотфиксирующие бактерии на клубнях.

Растения могут усваивать азот только в составе солей азотной кислоты. Вместе с листьями азот попадает сначала в организм травоядных животных (консументов первого порядка), а затем – хищных животных (консументов второго порядка). Обратно азот возвращается при гниении и в составе мочевины (CH4N2O).

Рис. 3. Схема круговорота азота в природе.

Часть нитратов окисляется специальными денитрифицирующими бактериями до свободного азота, который возвращается в атмосферу. Процесс восстановления свободного азота из сложных соединений называется денитрификацией.

Значение круговорота N2 для биосферы

Для того чтобы дать описание и схему круговорота азота в природе, нужно помнить, что этот элемент — важная часть белков и ДНК. Без него жизни, какой её знает человечество, могло и не быть. Но биологические существа способны усвоить его только в определённом виде. В результате различных геологических процессов этот элемент принимает ту форму, которой могут воспользоваться организмы. Обмен элементами между живыми существами, воздухом, водой и земной корой получил название биогеохимических циклов.

Таким образом, микроэлементы, являющиеся частью биологического организма, возвращаются в природу. В этом процессе частицы постоянно перемещаются между воздухом, водой и живыми организмами, в противном случае жизнь давно бы истратила свои ресурсы.

N2 входит в состав всего живого. Это один из самых популярных в природе элементов. Атмосфера земли на 78% состоит из N2. Он также содержится в воде и почве и входит в состав белков.

Этот элемент включается в синтез важнейших органических молекул, белков и нуклеиновых кислот. Азот в виде газа, содержащийся в атмосфере, довольно инертен и немногие организмы способны получать его из воздуха. Растения могут поглощать лишь связанный микроэлемент, то есть в составе химических соединений.

Молекулярный азот — очень стойкое соединение. Для его разрушения необходимо большое количество энергии.

Связывание или фиксация происходит тремя способами:

  1. За счёт электрических разрядов молний. Они расщепляют молекулы, позволяя вступать в соединения с кислородом. Образованный таким способом оксид азота растворяется в дождевой воде и поступает в почву, откуда его поглощают растения. Именно вспышки молний играют важную роль в развитии жизни на нашей планете.
  2. Человек — ещё один источник. Человеческая деятельность значительно увеличила его количество в природе. Сегодня треть этого связанного азота попадает в биосферу, благодаря широкому применению искусственных удобрений, содержащих нитраты. В промышленности связывание этого элемента с водородом происходит при температуре от 400 до 600 градусов по Цельсию и давлении до 1 тысячи атмосфер.
  3. В природе основными азотфиксаторами являются бактерии, особенно те из них, которые образуют симбиоз с корнями бобовых растений. Горох, фасоль, соя, клевер — все они относятся к данному типу. Благодаря симбиозу, они могут жить на очень бедных почвах, обогащая их. У этих растений есть механизм, который позволяет им совместно с клубеньковыми бактериями усваивать вещество из воздуха.

Для того чтобы понять, какие организмы принимают участие в круговороте азота, надо вспомнить класс биологии. Существуют важнейшие азотфиксаторы цианобактерии. Они играют важную роль в водных экосистемах. N2 также свободно фиксируется свободноживущими почвенными бактериями. При помощи специального фермента бактерии фиксируют атмосферный азот, синтезируя аммиак и нитраты. Получается взаимовыгодное существование. Микроорганизмы обеспечивают растения азотом, а растения питают бактерии сахарами.

Большинство видов растений получает нитраты из почвы. Растительные белки становятся частью травоядных животных, а затем хищников. В круговороте бактерии играют важнейшую роль, разлагая сложные азотсодержащие соединения, чтобы их усвоили растения. В условиях недостатка кислорода некоторые бактерии разлагают органические вещества до получения газообразного азота. Он возвращается в атмосферу и весь цикл повторяется вновь.

Как происходит круговорот

Круговорот азота в природе, по сути, является цепочкой замкнутых взаимосвязанных путей, которыми азот циркулирует в биосфере Земли. В природе основным поставщиком этого связанного элемента выступают различные микроорганизмы. Именно благодаря микроскопическим труженикам от 90 до 140 млн. тонн иона азота переходит в нужное для биосферы состояние.

Нахождение азота в природе во многом связано с жизнедеятельностью бактерий и водорослей. Круговорот N2 в природе берет свое начало в деятельности различных микроорганизмов, которые извлекают азот из разлагающихся отходов. Одна часть элемента преобразуется в молекулы, необходимые для существования этих микроорганизмов. Другая часть высвобождается в виде ионов аммония и молекул аммиака. Различные разновидности бактерий переводят азот из этих веществ в форму нитратов. Азотистые соединения в виде удобрения усваиваются растениями, а через них и животными. После смерти организма микроэлемент возвращается в почву, чтобы заново совершить круговорот азота в природе. Схема движения азота представлена ниже.

Во время совершения круговорота N2 может включаться в состав неорганических отложений или высвобождаться в результате деятельности некоторых бактерий. Кроме этого, извержения вулканов, работа гейзеров увеличивают долю этого вещества в земной атмосфере.

Факторы, влияющие на круговорот азота в антропогенных биоценозах

В отсутствие деятельности человека процессы связывания азота и нитрификации практически полностью уравновешены противоположными реакциями денитрификации. Часть азота поступает в атмосферу из мантии с извержениями вулканов, часть прочно фиксируется в почвах и глинистых минералах, кроме того, постоянно идёт утечка азота из верхних слоёв атмосферы в межпланетное пространство. Но в настоящее время на круговорот азота влияют много факторов, вызванных человеком.

Во-первых, это кислотные дожди — явление, при котором наблюдается понижение дождевых осадков и снега из-за загрязнений воздуха кислотными оксидами (например, оксидами азота). Химизм этого явления состоит в следующем. Для сжигания органического топлива в двигатели внутреннего сгорания и котлы подается воздух или смесь топлива с воздухом. Почти на 4/5 воздух состоит из газа азота и на 1/5 — из кислорода. При высоких температурах, создаваемых внутри установок, неизбежно происходит реакция азота с кислородом и образуется оксид азота:

Читайте также:
Естественные науки - список предметов и дисциплин, примеры

Эта реакция эндотермическая и в естественных условиях происходит при грозовых разрядах, а также сопутствует другим подобным магнитным явлениях в атмосфере. В наши дни человек в результате своей деятельности сильно увеличивает накопление оксида азота (II) на планете.

Оксид азота (II) легко окисляется до оксида азота (IV) уже при нормальных условиях:

Далее оксид азота реагирует с атмосферной водой с образованием кислот:

2NO2 + H2O = HNO3 + HNO2

образуются азотная и азотистая кислоты. В капельках атмосферной воды эти кислоты диссоциируют с образованием, соответственно нитрат- и нитрит-ионов, а ионы попадают с кислотными дождями в почву.

Вторая группа антропогенных факторов, влияющих на азотистый обмен почв, — это технологические выбросы. Оксиды азота — одни из самых распространенных загрязнителей воздуха. А неуклонный рост производства аммиака, серной и азотной кислоты напрямую связан с увеличением объёма отходящих газов, а следовательно, с увеличением количества выбрасываемых в атмосферу оксидов азота. Третья группа факторов — переудобрение почв нитритами, нитратами (селитрой) и органическими удобрениями.

И наконец, на азотистый обмен почв отрицательно влияет повышенный уровень биологического загрязнения. Возможные его причины: сброс сточных вод, несоблюдение санитарных норм (выгул собак, неконтролируемые свалки органических отходов, плохое функционирование канализационных систем и др.). Как следствие почва загрязняется аммиаком, солями аммония, мочевиной, индолом, меркаптанами и другими продуктами разложения органики. В почве образуется дополнительное количество аммиака, который затем перерабатывается бактериями в нитраты.

Основные стадии круговорота азота

Азот составляет около 80% атмосферного воздуха и является крупнейшим резервуаром и предохранительным клапаном атмосферы. Однако большинство организмов не могут усваивать азот из воздуха. Это доступно только некоторым организмам – бактериям, которые существуют в симбиозе с бобовыми растениями (горох, фасоль, соя). Они поселяются на корнях бобовых растений, образуя клубеньки, в которых и происходит химическая фиксация азота.

Общее время круговорота азота – примерно 100 лет. Усвоение азота

происходит в несколько этапов:


аммонификация, в процессе которого происходитобразованию аммиака. Аммиак используется растениями для синтеза аминокислот, из которых состоят белки.
2 этап


нитрификация, при этом образовавшийся аммиак преобразуется в соли азотной кислоты – нитраты, которые затем усваиваются корнями растений и транспортируются в листья, где происходит синтез белков.
3 этап


денитрификация – это процесс разложения белков. Распад идет
сначала с образованием нитратов, потом аммиака и, наконец, молекулярного азота.

Аммонификация, возбудители, значение процесса

Аммонификация — это минерализация азотсодержащих органических веществ, протекающая под воздействием аммонифицирующих микробов, выделяющих протеолитические ферменты. Благодаря аммонификации представителей растительного и животного мира и их продуктов жизнедеятельности (мочевины, испражнений) почва обогащается азотом и другими соединениями. Одновременно с этим аммонифицирующие микробы выполняют санитарную роль, очищая почву и гидросферу от разлагающегося органического субстрата. Подсчитано, что весь животный мир земного шара за сутки выделяет 150 тыс. т мочевины. За год это составляет более 50 млн. т мочевины, или 20 млн. т азота.

Аммонификация происходит с участием:

1. спорообразующих аэробов, например, картофельной бактерии, капустной бактерии, грибовидной бациллы и др.

2. не образующих спор аэробных аммонификаторов, например, Е. coli, Ps.

3. анаэробных спорообразующих аммонификаторов, например, газообразующей клостридии.

Аммонификацию вызывают также актиномицеты, грибы, триходермы,

живущие в почве.

Нитрификация, возбудители, значение процесса

Нитрификация –биохимический процесс окисления аммиака, образующегося в почве, навозе, воде, до азотной кислоты. Возбудителями являются нитрифицирующие бактерии. Чистые культуры этих бактерий впервые были получены в 1889г. Виноградским, а дальнейшие его исследования положили прочное основание современному пониманию этого явления.

Опыты с чистыми культурами возбудителей процесса нитрификации показали, что он идет в две фазы

и обусловливается жизнедеятельностью двух групп нитрифицирующих бактерий.
В первой фазе
нитритные бактерии окисляют аммиак до азотистой кислоты.
Вторая фаза
нитрификации, является результатом жизнедеятельности нитратных бактерий и сопровождается окислением азотистой кислоты в азотную, По мере образования азотистая и азотная кислоты связываются обычно имеющимися в окружающей среде основаниями и образуют соли этих кислот — нитриты и нитраты.

Денитрификация, возбудители, значение процесса

Денитрификация, протекающая под воздействием микробов, представляет собой восстановление нитратов с образованием в качестве конечного продукта — молекулярного азота, возвращающегося из почвы в атмосферу. С точки зрения биологического окисления денитрификация является примером анаэробного дыхания, при котором микроорганизмы используют связанный кислород в качестве акцептора водорода в отсутствии свободного кислорода.

Денитрификация протекает в анаэробных условиях: переувлажненных почвах, водоемах и приводит к потере связанных форм азота, необходимых живым организмам. Ферменты нитрит- и нитратредуктазы содержат многие микроорганизмы, например, псевдомонады, бациллы, энтеробактерии. Вызывается этот процесс денитрифицирующими бактериями, например, Pseudomonas fluorescens, Pseudomonas aeruginosa.

Азотфиксация, возбудители, значение процесса

Азотфиксация – это процесс усвоения молекулярного азота, перевода его в связанное состояние некоторыми микроорганизмами — диазотрофами

Различают симбиотические и несимбиотические фиксаторы азота.

К симбиотическим

относят прокариоты, внедряющиеся в клетки корня, стимулирующие их деление, ведущее к образованию клубеньков. Внутри клеток растений они фиксируют N2. Симбионты характерны для бобовых растений: сои, люцерны, гороха и т.д.

Несимбиотические

азотфиксаторы представлены свободноживущими бактериями популяции родов Azotobacter, Clostridium, Bacillus, Pseudomonas, цианобактерии и др.

На основе азотфиксирующих бактерий созданы биологические удобрения, используемые для улучшения азотного питания растений: азотобактерин, ризобин, агрофил и др.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: