Соотношение между сторонами и углами треугольника – свойства

Треугольник

Треугольник произвольный

Треугольник – это многоугольник с тремя сторонами (тремя углами).

Виды треугольников :+ показать

Остроугольный треугольник – треугольник, у которого все углы острые (то есть меньше 90˚).

Тупоугольный треугольник – треугольник, у которого один из углов тупой (больше 90˚).

Прямоугольный треугольник – треугольник, у которого один из углов прямой (равен 90˚).

Равнобедренным называется треугольник, у которого две стороны равны. Эти стороны называются боковыми , третья сторона называется основанием .

Равносторонний (правильный) треугольник – треугольник, у которого все три стороны равны.

Свойства

1. Против большей стороны лежит больший угол, и наоборот.

2. Против равных сторон лежат равные углы, и наоборот.

3. Сумма углов треугольника равна 180 º .

4. Внешний угол треугольника равен сумме внутренних углов,
не смежных с ним:

(Внешний угол образуется в результате продолжения одной из сторон треугольника).

5. Любая сторона треугольника меньше суммы двух других сторон.

Признаки равенства треугольников

1. Треугольники равны, если у них соответственно равны две стороны и угол между ними.

2 . Треугольники равны, если у них соответственно равны два угла и прилегающая к ним сторона.

3. Треугольники равны, если у них соответственно равны три стороны.

Биссектриса, высота, медиана

Здесь подробно о биссектрисе, высоте, медиане треугольника.

Средняя линия треугольника

Средняя линия треугольника – отрезок, соединяющий середины двух сторон треугольника.

Средняя линия треугольника параллельна третьей стороне и равна ее половине.

Вписанная окружность

Центр вписанной окружности – точка пересечения биссектрис треугольника.

Описанная окружность

Центр описанной окружности – точка пересечения серединных перпендикуляров.

Соотношение сторон в произвольном треугольнике

Теорема косинусов:

Теорема синусов:

Площадь треугольника

Через сторону и высоту

Через две стороны и угол между ними

Через радиус описанной окружности

Через радиус вписанной окружности

, где – полупериметр

, где – полупериметр

Смотрите также площадь треугольника здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

  • Тест по Задачам №11. Задачи на движение по воде
  • Пирамида, призма. Формулы объема и площади поверхности
  • Т/Р №221 А. Ларина (часть С)
  • Задачи на движение по прямой. Тест
  • Графики тригонометрических функций. Тангенс, котангенс
  • Элементы треугольника. Биссектриса

Есть пара ошибок в формулах. В частности в формуле вычисления площади через 2 стороны и угол между ними, в теореме Синусов, в разделе “свойства”.
А вообще отличные статьи, очень выручают, всё понятно и доступно, премного благодарен ;)

Анатолий, спасибо!
В разделе “свойства” ошибок не нашла…
В теореме синусов, – да… не пропечаталась буква гамма. Подправила.
В формуле площади треугольника, вы правы – картинка не соответствовала формуле. Исправила.
К сожалению, ошибки сразу не всегда замечаются.
Благодарю еще раз!

В разделе свойства:

Да, не хватало значка «» у А. Спасибо! ;)

Здраствуйте! Мне нужна ваша помощь!
Задача: ВЕРШИНЫ ТРЕУГОЛЬНИКА ДЕЛЯТ ОПИСАННУЮ ОКОЛО НЕГО ОКРУЖНОСТЬ НА ТРИ ДУГИ, ДЛИНЫ КОТОРЫХ ОТНОСЯТСЯ КАК 6:7:33. НАЙДИТЕ РАДИУС ОКРУЖНОСТИ, ЕСЛИ МЕНЬШАЯ ИЗ СТОРОН РАВНА 11.

Подозреваю, у вас опечатка в условии…
Если длины дуг (а значит и их градусные меры) находятся в отношении , то выходим на уравнение Откуда Значит угол треугольника, что напротив меньшей стороны, есть
Применяем теорему синусов: , откуда

спасибо я так и думал а то не могу решить и всё
СПАСИБО!

Здравствуйте. Пожалуйста, объясните, как решить задачу:
Вписанная в теругольник ABC окружность касается сторон AB, BC и AC в точках K,L и М соответственно.Найдите KL, если AM=2, МС=3 и угол С=π/3

Очевидно,
Примите за .
Примените к треугольнику теорему косинусов:

Найдете , далее можно найти угол и из треугольника найти

Спасибо большое за ваш сайт. Очень радует, тот факт, что когда люди не понимают какую-нибудь задачу, вы помогаете решить. Спасибо. Побольше бы таких сайтов, всё понятно и доступно

Читайте также:
Площадь цилиндра - как найти, формула через диаметр, примеры

Планиметрия. Страница 5

1.Теорема Пифагора

Теорема: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Доказательство.

1. Разделим каждую сторону большого квадрата на два отрезка x и y точкой. И проведем через эти точки отрезки.

2. Тогда треугольники 1,2,3,4 равны по двум сторонам и углу между ними.

3. Т.к. сумма углов α + β = 90°, то фигура внутри большого квадрата тоже квадрат. (Все стороны = с и все углы = 90° )

4. Площадь большого квадрата равна сумме площадей малого квадрата и 4-х треугольников. (Рис.1)

Рис.1 Теорема Пифагора.

2.Египетский треугольник

Пусть дан треугольник со сторонами АВ = a, ВС = b, АС = c. При условии, что а 2 + b 2 = с 2 . Доказать, что угол, лежащий против стороны с, прямой.

Допустим, что треугольник АВС не прямоугольный. Тогда можно опустить высоту на сторону АС – h (Рис.2). Из двух прямоугольных треугольников ABD и DBC составим следующую систему уравнений по теореме Пифагора. Обозначим AD как х, BD – высота h.

Но по условию задачи а 2 + b 2 = с 2 . Следовательно х = 0 и сторона а = h. Т.е. угол между сторонами АВ и АС – прямой.

В древнем Египте данное соотношение применялось очень широко. Например для построения прямого угла между сторонами при строительстве зданий и сооружений. Или при измерении прямых углов пахотных земель. Так как зная соотношение, можно легко построить прямой угол. По этой причине треугольник со сторонами 3,4,5 ед. называют Египетским треугольником.

Рис.2 Египетский треугольник.

3.Соотношение между углами и сторонами в прямоугольном треугольнике

Пусть дан прямоугольный треугольник АВС. Проведем прямую ЕF параллельную стороне АВ (Рис.3). Тогда по теореме о пропорциональных отрезках:

Т.е. соs α не зависит от размеров прямоугольного треугольника, а зависит только от величины угла. Тогда по теореме Пифагора sin α также зависит только от величины угла. А следовательно tg α и ctg α.

Отсюда можно сделать следующие выводы:

AB = BC sin α
AC = BC cos α
AB = AC tg α
AC = AB ctg α

Рис.3 Соотношение между углами и сторонами в прямоугольном треугольнике.

4.Основные тригонометрические тождества

Пусть дан прямоугольный треугольник со сторонами a,b,c. (Рис.4)

Рис.4 Основные тригонометрические тождества.

5.Пример 1

У треугольника одна сторона равна 1 м, а прилегающие к ней углы 30° и 45°. Найдите другие стороны треугольника. (рис.5)

Так как один из углов 30 градусов, то катет, лежащий против этого угла равен половине гипотенузы, т.е. h = b/2. А следовательно КС = h, т.к. угол β = 45 градусов.

Рис.5 Задача. У треугольника одна сторона равна 1 м.

Пример 2

Найдите высоту равнобокой трапеции, если ее основания равны 6 м и 12 м, а боковая сторона равна 5 м. (Рис.6)

Решение:

Пусть ABCD данная трапеция. ВЕ перпендикуляр, опущенный на основание AD. Тогда АЕ = (12 – 6)/ 2 = 3 м. Так как АЕ = FD.

По теореме Пифагора:

АВ 2 = AE 2 + BE 2

Рис.6 Задача. Найдите высоту равнобокой трапеции.

Пример 3

Докажите, что расстояние между двумя точками на сторонах треугольника не больше большей из его сторон. (Рис.7)

Доказательство:

Пусть ABC данный треугольник. АС – его большая сторона. Проведем отрезок DE параллельно стороне АС. Необходимо доказать, что отрезок DE меньше стороны АС. Если мы докажем, что отрезок DE меньше большей стороны АС, то при взятии двух других точек треугольника на других его меньших сторонах, отрезок между этими точками будет также меньше стороны АС.

Опустим перпендикуляр BF на большую сторону АС. Составим следующее соотношение:

АС = АВ сos α + ВС cos β

Читайте также:
Числовые выражения - определение, значения, формулы для 7 класса

Тогда отрезок DE будет равен:

DE = DB сos α + ВE cos β

Так как DB Рис.7 Задача. Докажите, что расстояние между двумя точками.

Пример 4

Докажите, что прямая, отстоящая от центра окружности на расстояние меньше радиуса, пересекает окружность в двух точках. (Рис.8)

Доказательство:

Пусть дана окружность с центром в точке О. И прямая а, отстоящая от центра окружности точки О, на расстояние ОЕ = h h, то прямая а будет иметь две точки пересечения. Так как

h = ОА*cos α = ОВ*cos (-α)

Радиусы ОА и ОВ можно рассматривать как две наклонные, отложенные в двух полуплоскостях, в треугольнике АОВ перпендикуляра ОЕ.

Рис.8 Задача. Докажите, что прямая, отстоящая от центра окружности.

Пример 5

Даны три положительных числа a,b,c. Докажите, что если каждое из этих чисел меньше суммы двух других, то существует треугольник со сторонами a,b,c. (Рис.9)

Доказательство:

Пусть даны три точки. Если эти три точки лежат на одной прямой, например А,Е,С, то расстояния между этими точками связаны соотношением: АС = АЕ + ЕС

Отсюда видно, что каждое из трех расстояний не больше двух других. Т.е. расстояние между точками А и С не больше двух расстояний АЕ и ЕС.

Если взять три точки, не лежащих на одной прямой, например А,В,С и опустить перпендикуляр ВЕ, то АС AB + BC (Рис.9 б). Тогда концы отрезков АВ и СВ не смогут совпасть в точке В. Так как, если даже отрезки такой же длины отложить на отрезке АС, то получится, что

Таким образом, если числа a,b и с принять за длины отрезков, то концы отрезков АВ и СВ не смогут совпасть в одной точке В. Между ними образуется некое расстояние ВВ1 и построить треугольник не получится.

Рис.9 Задача. Даны три положительных числа.

Квадратичная функция. Парабола

Прежде чем перейти к разбору квадратичной функции рекомендуем вспомнить, что называют функцией в математике.

Если вы прочно закрепите общие знания о функции (способы задания, понятие графика) дальнейшее изучение других видов функций будет даваться значительно легче.

Что называют квадратичной функцией

Квадратичная функция — это функция вида

Другими словами можно сказать, что если в функции старшая (то есть самая большая) степень, в которой стоит « x » — это « 2 », то перед нами квадратичная функция.

Рассмотрим примеры квадратичных функций и определим, чему в них равны коэффициенты « a », « b » и « с ».

Как построить график квадратичной функции

График квадратичной функции называют параболой.

Парабола выглядит следующим образом.

Также парабола может быть перевернутой.

Существует четкий алгоритм действий при построении графика квадратичной функции. Рекомендуем при построении параболы всегда следовать этому порядку действий, тогда вы сможете избежать ошибок при построении.

Чтобы было проще понять этот алгоритм, сразу разберем его на примере.

Построим график квадратичной функции « y = x 2 −7x + 10 ».

  1. Направление ветвей параболы

Если « a > 0 », то ветви направлены вверх.

Если « a », то ветви направлены вниз.

В нашей функции « a = 1 », это означает, что ветви параболы направлены вверх.

Координаты вершины параболы

Чтобы найти « x » (координата вершины по оси « Ox ») нужно использовать формулу:

Найдем « x » для нашей функции « y = x 2 −7x + 10 ».

x =

− (−7)
2 · 1

=

7
2

= 3,5

Теперь нам нужно найти « y » (координату вершины по оси « Oy »). Для этого нужно подставить найденное значение « x » в исходную функцию. Вспомнить, как найти значение функции можно в уроке «Как решать задачи на функцию» в подразделе «Как получить значение функции».

Выпишем полученные координаты вершины параболы.

Читайте также:
Объем цилиндра ℹ определение, формулы расчета через диаметр и площадь основания, примеры нахождения объема полого цилиндра, онлайн-калькулятор

(·) A (3,5; −2,25) — вершина параболы.

Отметим вершину параболы на системе координат. Проведем через отмеченную точку ось симметрии, так как парабола — это симметричный график относительно оси « Oy ».

Для начала давайте разберемся, что называют нулями функции.

Нули функции — это точки пересечения графика функции с осью « Ox » (осью абсцисс).

Наглядно нули функции на графике выглядят так:

Свое название нули функции получили из-за того, что у этих точек координата по оси « Oy » равна нулю.

Теперь давайте разберемся, как до построения графика функции рассчитать координаты точек нулей функции.

Чтобы найти координаты точек нулей функции, нужно в исходную функцию подставить вместо « y = 0 ».

Подставим в заданную функцию « y = x 2 −7x + 10 » вместо « y = 0 » и решим полученное квадратное уравнение относительно « x » .

Мы получили два корня в уравнении, значит, у нас две точки пересечения с осью « Ox ». Назовем эти точки и выпишем их координаты.

  • (·) B (5; 0)
  • (·) C (2; 0)

Отметим полученные точки («нули функции») на системе координат.

Возьмем четыре произвольные числовые значения для « x ». Целесообразно брать целые числовые значения на оси « Ox », которые наиболее близки к оси симметрии. Числа запишем в таблицу в порядке возрастания.

x 1 3 4 6
y

Для каждого выбранного значения « x » рассчитаем « y ».

  • y(1) = 1 2 − 7 · 1 + 10 = 1 − 7 + 10 = 4
  • y(3) = 3 2 − 7 · 3 + 10 = 9 − 21 + 10 = −2
  • y(4) = 4 2 − 7 · 4 + 10 = 16 − 28 + 10 = −2
  • y(6) = 6 2 − 7 · 6 + 10 = 36 − 42 + 10 = 4

Запишем полученные результаты в таблицу.

x 1 3 4 6
y 4 −2 −2 4

Отметим полученные точки графика на системе координат (зеленые точки).

Теперь мы готовы построить график. На забудьте после построения подписать график функции.

Краткий пример построения параболы

Рассмотрим другой пример построения графика квадратичной функции. Только теперь запишем алгоритм построения коротко без подробностей.

Пусть требуется построить график функции « y = −3x 2 − 6x − 4 ».

    Направление ветвей параболы « a = −3 » — ветви параболы направлены вниз.

Координаты вершины параболы

x =

−b
2a

x =

−(−6)
2 · (−3)

=

6
−6

= −1

y(−1) = (−3) · (−1) 2 − 6 · (−1) − 4 = −3 · 1 + 6 − 4 = −1

(·) A (−1; −1) — вершина параболы.

Точки пересечения с осью « Ox » ( y = 0 ).

−3x 2 − 6x − 4 = 0 |·(−1)

x1;2 =

−6 ± √ 6 2 − 4 · 3 · 4
2 · 1

x1;2 =

−6 ± √ 36 − 48
2

x1;2 =

−6 ± √ −12
2

Ответ: нет действительных корней.

Так как корней нет, значит, график функции не пересекает ось « Ox ».

Вспомогательные точки для: « x = −3 »; « x = −2 »; « x = 0 »; « x = 1 ». Подставим в исходную функцию « y = −3x 2 − 6x − 4 ».

  • y(−3) = −3 · (−3) 2 − 6 · (−3) − 4 = −3 · 9 + 18 − 4 = −27 + 14 = −13
  • y(−2) = −3 · (−2) 2 − 6 · (−2) − 4 = −3 · 4 + 12 − 4 = −12 + 12 − 4 = −4
  • y(0) = −3 · 0 2 − 6 · 0 − 4 = −4
  • y(1) = −3 · 1 2 − 6 · 1 − 4 = −3 −6 − 4 = −13
x −3 −2 1
y −13 −4 −4 −13

Отметим вспомогательные точки. Отмечаем на системе координат только те точки, которые не выходят за масштаб нашей системы координат, то есть точки « (−2; −4) » и « (0; −4) ». Построим и подпишем график функции.

Квадратичная функция.

Видео-уроки по теме “График квадратичной функции – парабола” расположены в конце страницы.

Квадратным трёхчленом называется многочлен 2-ой степени, то есть выражение вида ax 2 + bx + c, где a ≠ 0, b, c – (обычно заданные) действительные числа, называемые его коэффициентами, x – переменная величина.

Читайте также:
Обыкновенные дроби - основное свойство, примеры, действия

Обратите внимание: коэффициент a может быть любым действительным числом, кроме нуля. Действительно, если a = 0, то ax 2 + bx + c = 0·x 2 + bx + c = 0 + bx + c = bx + c. В этом случае в выражении не остаётся квадрата, поэтому его нельзя считать квадратным трёхчленом. Однако, такие выражения-двучлены как, например, 3x 2 − 2x или x 2 + 5 можно рассматривать как квадратные трёхчлены, если дополнить их недостающими одночленами с нулевыми коэффициентами: 3x 2 − 2x = 3x 2 − 2x + 0 и x 2 + 5 = x 2 + 0x + 5.

Если стоит задача, определить значения переменной х, при которых квадратный трёхчлен принимает нулевые значения, т.е. ax 2 + bx + c = 0, то имеем квадратное уравнение.

Если существуют действительные корни x1 и x2 некоторого квадратного уравнения, то соответствующий трёхчлен можно разложить на линейные множители: ax 2 + bx + c = a(xx1)(xx2)

Замечание: Если квадратный трёхчлен рассматривать на множестве комплексных чисел С, которое, возможно, вы еще не изучали, то на линейные множители его можно разложить всегда.

Когда стоит другая задача, определить все значения, которые может принимать результат вычисления квадратного трёхчлена при различных значениях переменной х, т.е. определить y из выражения y = ax 2 + bx + c, то имеем дело с квадратичной функцией.

При этом корни квадратного уравнения являются нулями квадратичной функции.

Квадратный трёхчлен также можно представить в виде

Это представление удобно использовать при построении графика и изучении свойств квадратичной функции действительного переменного.

Квадратичной функцией называется функция, заданная формулой y = f(x), где f(x) – квадратный трёхчлен. Т.е. формулой вида

где a ≠ 0, b, c – любые действительные числа. Или преобразованной формулой вида

.

Графиком квадратичной функции является парабола, вершина которой находится в точке .

Обратите внимание: Здесь не написано, что график квадратичной функции назвали параболой. Здесь написано, что графиком функции является парабола. Это потому, что такую кривую математики открыли и назвали параболой раньше (от греч. παραβολή – сравнение, сопоставление, подобие), до этапа подробного изучения свойств и графика квадратичной функции.

Парабола – линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и параллельной одной из образующих этого конуса.

Парабола обладает еще одним интересным свойством, которое также используется как её определение.

Парабола представляет собой множество точек плоскости, расстояние от которых до определенной точки плоскости, называемой фокусом параболы, равно расстоянию до определенной прямой, называемой директрисой параболы.

Построить эскиз графика квадратичной функции можно по характерным точкам.
Например, для функции y = x 2 берем точки

x 1 2 3
y 1 4 9

Соединяя их от руки, строим правую половинку параболы. Левую получаем симметричным отраженим относительно оси ординат.

Для построения эскиза графика квадратичной функции общего вида в качестве характерных точек удобно брать координаты её вершины, нули функции (корни уравнения), если они есть, точку пересечения с осью ординат (при x = 0, y = c) и симметричную ей относительно оси параболы точку (−b/a; c).

x b/2a x1 x2 b/a
y −(b 2 − 4ac)/4a с с
при D ≥ 0

Но в любом случае по точкам можно построить только эскиз графика квадратичной функции, т.е. приблизительный график. Чтобы построить параболу точно, нужно использовать её свойства: фокус и директрису.
Вооружесь бумагой, линейкой, угольником, двумя кнопками и крепкой нитью. Прикрепите одну кнопку примерно в центре листа бумаги – в точке, которая будет фокусом параболы. Вторую кнопку прикрепите к вершине меньшего угла угольника. На основаниях кнопок закрепите нить так, чтобы её длина между кнопками равнялась большому катету угольника. Начертите прямую линию, непроходящую через фокус будущей параболы, – директрису параболы. Приложите линейку к директрисе, а угольник к линейке так, как показано на рисунке. Перемещайте угольник вдоль линейки, одновременно прижимая карандаш к бумаге и к угольнику. Следите за тем, чтобы нить была натянута.

Измерьте расстояние между фокусом и директрисой (напоминаю – расстояние между точкой и прямой определяется по перпендикуляру). Это фокальный параметр параболы p. В системе координат, представленной на правом рисунке, уравнение нашей параболы имеет вид: y = x 2 /2p. В масштабе моего рисунка получился график функции y = 0,15x 2 .

Замечание: чтобы построить заданную параболу в заданном масштабе, делать нужно всё то же самое, но в другом порядке. Начинать нужно с осей координат. Затем начертить директрису и определить положение фокуса параболы. И только потом конструировать инструмент из угольника и линейки. Например, чтобы на клетчатой бумаге построить параболу, уравнение которой у = x 2 , нужно расположить фокус на расстоянии 0,5 клеточки от директрисы.

Читайте также:
Точки пересечения графиков функций - понятие, как их найти

Свойства функции у = x 2

  1. Область определения функции – вся числовая прямая: D(f) = R = (−∞; ∞).
  2. Область значений функции – положительная полупрямая: E(f) = [0; ∞).
  3. Функция у = x 2 четная: f(−x) = (−x) 2 = x 2 = f(x) .
    Ось ординат является осью симметрии параболы.
  4. На промежутке (−∞; 0) функция монотонно убывает.
    На промежутке (0; + ∞) функция монотонно возрастает.
  5. В точке x = 0 достигает минимального значения.
    Точка с координатами (0;0) является вершиной параболы.
  6. Функция непрерывна на всей области определения.
  7. Асимптот не имеет.
  8. Нули функции: y = 0 при x = 0.

Свойства квадратичной функции общего вида.

  1. Область определения функции – вся числовая прямая: D(f) = R = (−∞; ∞).
  2. Область значений функции зависит от знака коэффициента a.
    При a > 0 ветви параболы направлены вверх, функция имеет наименьшее (ymin), но не имеет наибольшего значения: E(f) = [ ymin; ∞) ;
    при aE(f) = (−∞; ymax ] .
  3. В общем случае функция у = ax 2 + bx + c не является ни четной, ни нечетной.
    Осью симметрии параболы является прямая x = −b/2a .
    Функция будет четной только в случае, когда эта прямая совпадает с осью Oy, т.е. при b = 0.
  4. При a > 0 функция монотонно убывает на промежутке (−∞; −b/2a) и монотонно возрастает на промежутке (−b/2a; ∞).
    При a 0 — минимум функции.

Оба значения определяются по формуле y = − b 2 − 4ac _______ . 4a

Точка с координатами является вершиной параболы.

  • Функция непрерывна на всей области определения.
  • Асимптот не имеет.
  • Парабола пересекает ось ординат в точке (0;c).
    Если квадратный трёхчлен имеет дейтсивтельные корни x1x2, то парабола пересекает ось абсцисс в точках (x1;0) и (x2;0).
    При x1 = x2 парабола касается оси абсциcс в точке (x1;0).
  • Производная квадратичной функции вычисляется по формуле (ax 2 + bx + c)’ = 2ax + b.

    График квадратичной функции, заданной общей формулой, лучше всего строить и изучать пользуясь Правилами преобразования графиков функций.
    Для этого нужно сначала перейти от формулы y = ax 2 + bx + c к виду, удобному для преобразований, y = m(kx + l) 2 + n, где k, l, m, n – числа, зависящие от a, b, c, т.е. к виду
    .
    Затем взять за основу параболу y = x 2 и применить к ней следующие преобразования:

    • Параллельный перенос (сдвиг) исходной параболы на l = b/2a единиц влево (если l 2 − 4ac)/4a единиц вверх или вниз в зависимости от знака n (при n >0 вверх).

    Формулы для такого перехода можно выучить наизусть, а можно научиться выделять полный квадрат из трёхчлена с заданными коэффициентами. Это умение весьма полезно также для решения некоторых уравнений и неравенств, для вычисления интегралов и т.д.

    Рассмотрим пример:
    Пусть y = 3x 2 − 5x + 2
    1) Объединяем в скобки первые два слагаемых и выносим за скобки коэффициент при х 2 .
    2) В скобках умножим и одновременно разделим на 2 коэффициент при x.
    3) Сравним с формулой возведения двучлена в квадрат: имеем внутри скобок квадрат числа x, удвоенное произведение x на дробь 5/6. Чтобы применить эту формулу не хватает второго квадрата, поэтому добавим недостающее слагаемое 5 2 /6 2 и одновременно вычтем его, чтобы сохранилось исходное значение выражения.
    4) Сворачиваем квадрат по формуле и раскрываем большую скобку.
    5) Оставшиеся числовые дроби приводим к общему знаменателю и складываем.

    Итак, чтобы построить график функции y = 3x 2 − 5x + 2 из графика y = x 2 нужно последний сдвинуть по оси Ox вправо на 5/6 ≈ 0,83 единицы. Затем растянуть вдоль оси Oy в 3 раза и, наконец, опустить по оси Oy на 1/12 ≈ 0,08 единицы.
    Посмотрите, что получилось.

    Если Вы являетесь моим учеником или подписчиком, то можете поработать с интерактивными версиями этих графиков.

    Упражнение:
    Постройте по характерным точкам эскиз графика функции y = x 2 .
    Методом преобразования получите эскиз графика функции y = −x 2 + 4x + 6 .
    Посмотрите в каких точках график этой функции пересекает ось Ox и сравните их координаты (абсциссы) с корнями уравнения −x 2 + 4x + 6 = 0 , вычисленными через дискриминант. Насколько точным оказалось ваше графическое решение уравнения?

    Преобразуем выражение с выделением полного квадрата:

    Строим график функции
    .

    Для этого применяем следующие шаги: сдвиг на 2 клетки вправо, разворот ветвей вниз (вершина – точка, относительно которой поворачиваем), поднимаем вершину и, соответственно, всю параболу вверх на 10 клеточек. Вот что должно получиться
    .

    Визуально определяем корни. Парабола пересекает ось Ox примерно на одну пятую часть клетки левее минус единицы и настолько же правее пятерки, т.е. x1 ≈ −1,2 , x2 ≈ 5,2 .

    Решение по формулам нахождения корней квадратного уравнения дает ответы x1 = 2 − √10 __ , x2 = 2 + √10 __ .
    С помощью калькулятора вычисляем x1 = −1,162277660. , x2 = 5,162277660.

    Парабола – очень интересная кривая, квадратичная функция часто встречается при описании различных природных явлений, экономических процессов.

    Видеоуроки с параболой.

    Графики квадратичной функции и коэффициенты квадратного трёхчлена.

    Положение и вид параболы в зависимости от знака и значения коэффициента а – коэффициента при х 2 .

    Положение и вид параболы в зависимости от знака и значения коэффициента b – коэффициента при х.

    Положение и вид параболы в зависимости от знака и значения параметра c.

    Построение параболы по характерным точкам.

    Быстрое построение параболы как графика квадратичной функции.

    Другие случаи. Примеры построения.

    Задачи на анализ графика квадратичной функции.

    Задания вида “Установить соответствие между коэффициентами квадратного трёхчлена и приведенными графиками квадратичной функции” встречаются в ОГЭ по математике в 9-ом классе, а также необходимы сдающим ЕГЭ за 11 класс в качестве промежуточного действия.

    Понравились материалы сайта? Узнайте, как поддержать сайт и помочь его развитию.

    Есть вопросы? пожелания? замечания? Обращайтесь – mathematichka@yandex.ru

    Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено.

    Квадратичная функция. Построение Параболы

    О чем эта статья:

    8 класс, 9 класс, ЕГЭ/ОГЭ

    Основные понятия

    Функция — это зависимость «y» от «x», при которой «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

    Задать функцию означает определить правило в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

    • Табличный способ. Помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
    • Графический способ: наглядно.
    • Аналитический способ, через формулы. Компактно и можно посчитать функцию при произвольном значении аргумента из области определения.
    • Словесный способ.

    График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.

    Построение квадратичной функции

    Квадратичная функция задается формулой y = ax 2 + bx + c, где x и y — переменные, a, b, c — заданные числа, обязательное условие — a ≠ 0. В уравнении существует следующее распределение:

    График квадратичной функции — парабола, которая имеет следующий вид для y = x 2 :

    Точки, обозначенные зелеными кружками называют базовыми точками. Чтобы найти их координаты для функции y = x 2 , нужно составить таблицу:

    x

    y

    Если в уравнении квадратичной функции старший коэффициент равен единице, то график имеет ту же форму, как y = x 2 при любых значениях остальных коэффициентов.

    График функции y = –x 2 выглядит, как перевернутая парабола:

    Зафиксируем координаты базовых точек в таблице:

    x

    y

    Посмотрев на оба графика можно заметить их симметричность относительно оси ОХ. Отметим важные выводы:

    • Если старший коэффициент больше нуля a > 0, то ветви параболы напрaвлены вверх.
    • Если старший коэффициент меньше нуля a 2 + bx + c, для построения которой нужно решить квадратное уравнение ax 2 + bx + c = 0. В процессе найдем дискриминант D = b 2 – 4ac, который даст нам информацию о количестве корней квадратного уравнения.

    Рассмотрим три случая:

    1. Если D 0,то график выглядит так:
    1. Если D = 0, то уравнение имеет одно решение, а парабола пересекает ось ОХ в одной точке. Если a > 0, то график имеет такой вид:
    2. Если D > 0, то уравнение имеет два решения, а парабола пересекает ось ОХ в двух точках, которые можно найти следующим образом:

    Если a > 0, то график выглядит как-то так:

    0″ height=”671″ src=”https://lh6.googleusercontent.com/8ryBuyxmK9S2EbnsNc4AE5PEl_NpIg0RAM_Y_V8wUP-zREEHNgi9QoQTl8FXxoujjWRAvf3s-MPRsXsoepaLLSTHDX-ReGtrsnLQp4dW3WaEyPF2ywjVpYFXlDIpAEHoIiwlxiB7″ width=”602″>

    На основе вышеизложенного ясно, что зная направление ветвей параболы и знак дискриминанта, у нас есть понимание, как будет выглядеть график конкретной функции.

    Координаты вершины параболы также являются важным параметром графика квадратичной функции и находятся следующим способом:

    Ось симметрии параболы — прямая, которая проходит через вершину параболы параллельно оси OY.

    Чтобы построить график, нам нужна точка пересечения параболы с осью OY. Так как абсцисса каждой точки оси OY равна нулю, чтобы найти точку пересечения параболы y = ax 2 + bx + c с осью OY, нужно в уравнение вместо х подставить ноль: y(0) = c. То есть координаты этой точки будут соответствовать: (0; c).

    На изображении отмечены основные параметры графика квадратичной функции:

    Алгоритм построения параболы

    Рассмотрим несколько способов построения квадратичной параболы. Наиболее удобный способ можно выбрать в соответствии с тем, как задана квадратичная функция.

    Уравнение квадратичной функции имеет вид y = ax 2 + bx + c.

    Разберем общий алгоритм на примере y = 2x 2 + 3x – 5.

    Как строим:

    1. Определим направление ветвей параболы. Так как а = 2 > 0, ветви параболы направлены вверх.
    2. Найдем дискриминант квадратного трехчлена 2x 2 + 3x – 5.

    D = b 2 – 4ac = 9 – 4 * 2 * (-5) = 49 > 0

    В данном случае дискриминант больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ. Чтобы найти их координаты, решим уравнение:

    2x 2 + 3x – 5 = 0 2 + 3x – 5 = 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAPoAAAAyCAYAAAB1V8bkAAAJyElEQVR4Ae2c16sUwRLGfdRX/wXFB30QFFQUQUyIKCIGBEEQzCCoKIgB01ExZwVz4JpzztljwJxzzjlnrcuvL33unD2zOzO7OzvuThU0u5N6uuvrr7u6unrKiYpqQDVQ8BooV/A11AqqBlQDokTXRqAaiIEGlOgxAFmrqBpQomsbUA3EQANK9BiArFVUDSjRtQ2oBmKgASV6DEDWKqoGlOjaBlQDMdBAQRH9z58/8vv3b5P+/v2bMXy/fv0S8kxMGWesGRgNpIMXz7jhkg28CxmWgiH69+/f5dSpU7JixQpZtmyZXLx4UX7+/JkUOxoGjSaVTJw4UVatWiUbNmwoSYcPH071iF7zqYGgeNlsT58+LZMnTy7BA2y2bNkib9++tbfor4sGCobogD19+nR5/fq1nDx5Upo0aSLHjh2TZD39x48f5ebNmy4q+d8pRo327dtLo0aNTF6NGzeWevXqCeRXyVwDQfHijXTMmzZtMjiAL6lu3brSuXNnuXfvXuaFKuAcCobojOQDBgwwgD948EAg5ubNm42Z54bfjRs3ZMqUKW6XzDk6jP379wsjD/LmzRtZt26dvHr1KukzesG/BoLiRc5gceXKFZM4/vbtmxw6dEguXbokP3788P/yGN5ZMET/8uWLvHv3Tt6/f2/Muh49esj169eTQupF9MQHIfm1a9cST+txmhoIipfba86fPy9Hjx4VrDOV1BooGKJTTYh++fJlGTt2rCxevNgcJ6t+EKIz3587d26yrPR8mhoIglfiK549e2Y6dHBU8dZA3hH9+PHjYhNmnFO+fv1qTOwDBw5Ily5dhF+nQ47ndu/ebdLChQule/fuJcecp9E477d5d+zYUW7fvm0P9TeABixW/AbBCz+LffbChQtl3rh69WpZsmSJjuZlNON+Iu+IDkGZW+N427Ztm6nVp0+f5MiRI6Zh2Dl1hw4dZOjQoaVGdebc1oM+a9Ys48Sxx/y6zfUePnwoVapUcdeenvXUQLp4LV261OA8bdo0g5nzRR8+fJBhw4YJeav400DeEf3Ro0dmZGD+/fLlS1NLzLjhw4fLmDFjhEaA4DHv16+fGeHdVOHXdKczqVy5slsWes6HBtLF6/HjxwZn/CLPnz8v9aZbt25Jt27dlOiltJL6IO+I7lYdTPY1a9bIjBkz5M6dO7Jjxw5hRN++fXtSb6xfos+ZM0cqVark9trQzrEmXFxc7LnOH1oBQs44HbycRTpz5oy0a9funyA6DkGW/NavX19mauIsc+J/OkCmJliRL168ME7FVM7jxOeDHhcE0ak05KD3P3v2rFkWO3HihHz+/DmpPlh3XbRoUdLr9gL5LF++3B6G+nv//n3ZuHGjDBw4UDp16pS0kwq1EDnKPChezmI9efJEtm7dmnJVxXl/WP8PHjxopoxXr141RG3Tpo0JsPLzPqaaLVq0kDp16kjDhg2lb9++JgbEz7Pp3FMwRKfyBLkwX2fpxivqjbm8Nf1TKY77WK/NhVBuGvGoUaNMHID1N+Ti3VG8IwhezvIR5gwm/EYlrBgMGTJE9u3bZxy4YDV69Gjf/py9e/fKypUrjSVKLEDYqwcFRfSoQM/2e2fOnGmivgqd6NnWWy7zI3CqefPmUlRUVOIXgrzly5cXfEZewr2Y/XTuyaI3vfIIcj1tolM4lpyIBZ83b56MGzdO9uzZY0YjwkSfPn0apBx6r0MDYRBd8XIoOAt/sRiZU0N4az2OHz9eKlSo4MvSgOgs6RKIBYdIYUraRMfsYpkL84m5cc+ePY1DYv78+dKnTx/B2eAlmKldu3b1TISy5luII8s/XnWbNGmSMC9PlDCIrniJcXB6YcJ15s9+JHEkrlq1qixYsMDPowLRcRqzSgSHiOkI0xeUNtHpxXBUIQQ3tGrVKnLniC8N58FNYRBd8QoOPES2Php8Agw2dvR25gZRcaaNHDnSeTrlf/JxdhTsuMQacJ5LmUHAi2kT3b6HyrNBoXXr1uYUBXVThr3f+YuCcGp4JZRsFYAV8K8lt1hremqveuE4RAeJEgbR7Tvigpfb1JG6e2HCde5DCJbCM16rVi2T2D9BiLVT6Agwv3GsgSXPumHqfAZ+sLqCNWfbNQ455ve8MwxJm+gsXeF0YFcXPRlRaAiebD/OCO5l/XDQoEGeCTPHhqZWq1ZN/rVElF2iTJ061bNemHkEhiRKGESPG141atRIVKtZevXT3tjz7kcYgIioZDRmtyM6Zk09sf0zbYIndkBgabFt27ZmeZeYAgQzvmLFimWe9VMOP/ekTXTWMXv37m16uF69esmECRNMZdgDzgcgVIJrwLm8Vr9+fSECjM4wG6J4ZUOL/8+DgQdSwwGccIRkk4jITBRGaZZM8V/ZlRRGdIJlwJzBsX///gKPwpK0iY7HkArSgKgwu8XYMnju3LmkgSr0ZNZUCatCfvLFtKIHtj2sn2dycY8NmCGcF6cQIwXx+dmQfMMLfEj/qjA1Yx29ZcuWpRLmfaLcvXtXBg8eLCNGjChxUoM1mBAdt3btWmP9ZatTT3w/x2kTHcKytAB5EeYmyYiDecpWz9mzZyf9EIRb4cI6Rw/KikGcLI98w4vlWkKYC0Uw5xkEMeGt4A/Akc28P+wBMG2i28L6+WV7IruRmjVrVmK6+HkujHuYL+3atcuUhbm/SlkNRI0Xn/iqWbOmaTNlS5d/ZzDzITOhslFJTohO5Rg98WDaOUoUFabXpBExV2JThBI9OQpR4YX1x3SQb/UxOBSCYO2yA48RPCqJFdGZmxN8w/q/Ej11k4uK6ERXMqflw4+FQvTUms7N1VgRnYgndq2RlOipG1gURCf2myhLpldNmzZVoqeGKNDV2BAdj+bOnTuNcpTo3m0k10THrCVohCAiRInujVGQO2JDdJYA8bQTpIJHt3bt2mZtk1FEpawGck10PrRB4BEf4QQjgqIIK2UbqErmGsgJ0fE2AmL16tWFj/oRwpprYcRgVCcR+URsPkELBCyolNZAFHgRVcZyrcWoQYMGwtd97KfBSpdQj4JqICdEZ3kBkwwQIZZXLHDQSvi9H687G/wJgyREkl+7McdvHnG4L0q8WG9mUOCDnASf4DxVyVwDOSF65sXMXg6QnYbMMh+/fjfgZK8EmlMqDYAPzji7WyyqQSFVGfPxWuyIno8gaZlVA5lqQImeqQb1edVAHmhAiZ4HIGkRVQOZakCJnqkGI3m+WIrKlZOi45G8XF+ahxpQouchaKbIx4uU6PmKXQTlVqJHoPTMX/lM/tOuSIozz0hziIkGlOgxAVqrGW8NKNHjjb/WPiYaUKLHBGitZrw1oESPN/5a+5hoQIkeE6C1mvHWwH8BSUfSiO3XWNEAAAAASUVORK5CYII=”>

    1. Координаты вершины параболы:
    1. Точка пересечения с осью OY находится: (0; -5) и ей симметричная.
    2. Нанести эти точки на координатную плоскость и построить график параболы:
      2 + 3x – 5 = 0″ height=”671″ src=”https://lh6.googleusercontent.com/TYyA5dFfh0ZKINaPSps3Y_X1mCv8Mhv_8bNG3_dPbZud1AEsvo7UBFmVQNm1GcR1CQFo6HE1lNjYaAgepQUTQiK_ay_Fnuv7LEsB53woHkFO66W0R1PP8QfGsFcYzaR_h4AJdLxC” width=”602″>

    Уравнение квадратичной функции имеет вид y = a * (x – x₀) 2 + y₀

    Координаты его вершины: (x₀; y₀). В уравнении квадратичной функции y = 2x 2 + 3x – 5 при а = 1, то второй коэффициент является четным числом.

    Рассмотрим пример: y = 2 * (x – 1) 2 + 4.

    Как строим:

    1. Воспользуемся линейным преобразованием графиков функций. Для этого понадобится:
    • построить y = x 2 ,
    • умножить ординаты всех точек графика на 2,
    • сдвинуть его вдоль оси ОХ на 1 единицу вправо,
    • сдвинуть его вдоль оси OY на 4 единицы вверх.
    1. Построить график параболы для каждого случая. 2 + y₀” height=”431″ src=”https://lh5.googleusercontent.com/_zgF-CXWf4Yy0p2OnBYSJkUm0zO-mNetq5feU6LIPEbIgSrO9kdr2ti_tr7Gg3yTMOlJVnuZgG0HleAFfAzG7yr7ELHT6KSMqMrRHkHqt-VcgIiSZx80cVj0zlPMBzEM0wAWQ-L6″ width=”602″>

    Уравнение квадратичной функции имеет вид y = (x + a) * (x + b)

    Рассмотрим следующий пример: y = (x – 2) * (x + 1).

    Как строим:

    1. Данный вид уравнения позволяет быстро найти нули функции:

    (x – 2) * (x + 1) = 0, отсюда х₁ = 2, х₂ = -1.

    1. Определим координаты вершины параболы:
    1. Найти точку пересечения с осью OY:

    с = ab =(-2) * (1)= -2 и ей симметричная.

    1. Отметим эти точки на координатной плоскости и соединим плавной прямой.

    Квадратичная функция (ЕГЭ 2022)

    Проверь себя, ответь на эти вопросы:

    • Как выглядит квадратичная функция в общем виде (формула)?
    • Как называется график квадратичной функции?
    • Как влияет старший коэффициент на график квадратичной функции?
    • Как построить график квадратичной функции?
    • Какие есть варианты расположения графика?

    В конце статьи ты будешь знать ответы на эти вопросы.

    Квадратичная функция – коротко о главном

    Квадратичная функция – функция вида ( y=a<^<2>>+bx+c), где ( ane 0), ( b) и ( c) ­– любые числа (коэффициенты), ( c) – свободный член.

    График квадратичной функции – парабола.
    Вершина параболы: ( displaystyle <_<в>>=frac<-b><2a>).

    Квадратичная функция вида: ( y=a<^<2>>).

    Чем больше значение ( displaystyle a) (по модулю), тем у́же становится парабола (ветви становятся более крутыми). И наоборот, чем меньше ( displaystyle a), тем парабола шире.

    Варианты расположения параболы в зависимости от коэффициента ( displaystyle a) и дискриминанта ( displaystyle D=<^<2>>-4ac).

    1. Найти координаты вершины;
    2. Построить ось симметрии, проанализировать куда направлены ветви параболы;
    3. Найти точки пересечения параболы с осью ( displaystyle Ox) (нули), если они есть, решив уравнение ( displaystyle 0=a<^<2>>+bx+c);
    4. Найти точку пересечения с осью ( displaystyle Oy), решив уравнение ( displaystyle y=acdot 0+bcdot 0+c=c).

    Что такое функция?

    Не знаешь? Тогда сперва прочитай тему «Функции» – она несложная, но очень важная.

    А мы пока повторим.

    Функция – это правило, по которому каждому элементу одного множества (аргументу) ставится в соответствие некоторый (единственный!) элемент другого множества (множества значений функции).

    То есть, если у тебя есть функция ( y=fleft( x right)), это значит что каждому допустимому значению переменной ( x) (которую называют «аргументом») соответствует одно значение переменной ( y) (называемой «функцией»).

    Что значит «допустимому»? Если не можешь ответить на этот вопрос, еще раз вернись к теме “Функции”.

    Все дело в понятии «область определения»:

    Для некоторых функций не все аргументы можно подставить в зависимость.

    Например, для функции ( y=sqrt) отрицательные значения аргумента ( x) – недопустимы.

    Кстати, а с линейной функцией ты уже дружишь? Про нее все написано в теме «Линейная функция» – там ты поймешь, что в функциях ничего страшного нет и научишься понимать и использовать коэффициенты (это циферки перед буквой ( x)).

    И еще, надеюсь, ты умеешь решать квадратные уравнения? Освежить память можно, почитав тему «Квадратные уравнения».

    Квадратичная функция – подробнее

    Квадратичная функция – это функция вида ( y=a<^<2>>+bx+c), где ( ane 0), ( b) и ( c) ­– любые числа (они и называются коэффициентами).

    Число ( a) называют старшим или первым коэффициентом такой функции, ( b) – вторым коэффициентом, а ( c) – свободным членом.

    Другими словами, квадратичная функция – это зависимость, содержащая аргумент в квадрате. Отсюда и ее название.

    Как уже говорилось в теме «Функции», важнейшими понятиями, связанными с любой функцией, являются ее область определения ( Dleft( y right)) и область значений( Eleft( y right)).

    Какими могут быть значения аргумента квадратичной функции ( y=a<^<2>>+bx+c)? Правильно, любыми. Ведь в эту формулу можно подставить любое число (в отличии, например, от функции ( y=frac<1>) – в нее нельзя подставить ( x=0)).

    Значит, область определения – все действительные числа:

    ( Dleft( y right)=mathbb) или ( Dleft( y right)=left( -infty ;+infty right)).

    А теперь множество значений. Все ли значения может принимать функция?

    Достаточно рассмотреть самую простую квадратичную функцию ( y=<^<2>>) ( left( a=1,text< >b=0,text< >c=0 right)

    ), чтобы убедиться в обратном: ведь какое бы число мы не возводили в квадрат, результат всегда будет больше или равен нулю.

    Значит, эта функция всегда не меньше нуля.

    А вот больше нуля она может быть сколько угодно: ведь бесконечно большой x в квадрате будет еще больше.

    Таким образом, можем написать для ( y=<^<2>>:Eleft( y right)=left[ 0;+infty right)).

    В каждом отдельном случае область значений будет разная, но всегда – ограниченная.

    График квадратичной функции

    Наверняка ты слышал, что график квадратичной функции называется параболой. Как она выглядит? Сейчас нарисуем

    Кстати мы очень подробно разобрали как быстро и правильно рисовать параболу. Переходи по ссылке и всему научишься.

    Начнем с простейшей квадратичной функции – ( y=<^<2>>).

    Составим таблицу значений:

    x -2 -1 1 2
    y 4 1 1 4

    Нарисуем эти точки на координатной плоскости и соединим их плавной линией:

    Именно так и выглядит парабола. Самая нижняя ее точка называется вершиной, а части спарва и слева от вершины называем ветвями параболы. Как видим, ветви симметричны относительно вертикали, проходящей через вершину.

    Рассмотрим теперь другую функцию: ( y=<^<2>>-2-3).

    Составим таблицу значений:

    x -2 -1 1 2 3 4
    y 5 -3 -4 -3 5

    Сравним два рисунка.

    Видно, что это как будто одна и та же парабола, просто расположенная в разных местах.

    Во второй параболе вершина переместилась в точку ( left( 1;-4 right)), а ветви переехали вместе с ней.

    Да, так оно и есть: все параболы с одинаковым старшим коэффициентом, a выглядят одинаково – даже при разных остальных коэффициентах.

    Кстати, если хочешь научиться быстро и правильно рисовать график квадратичной функции, то переходи по ссылке, там отличная статья.

    Коэффициенты квадратичной функции

    Давай разберем, на что влияют коэффициенты квадратичной функции.
    Начнем со старшего коэффициента.
    Будем рассматривать функции вида ( y=a<^<2>>) (( b=0), ( c=0) – пусть не мешают).

    Построим на одном рисунке графики нескольких функций: при ( a= -2,text< >-1,frac<1><2>,text< >1,text< >3:)

    Что ты видишь? Чем они отличаются? Какую закономерность можно заметить?

    Во-первых, это невозможно не заметить, если ( displaystyle mathbf mathbf<0>) – вверх.

    Значит, если парабола пересекает ось ( displaystyle Ox) в двух точках, то у нас два корня квадратного уравнения.

    Если не пересекает – корней нет.

    Но бывает ведь, что дискриминант уравнения равен нулю, и тогда только один корень. В этом случае парабола касается оси ( displaystyle Ox) вершиной:

    А что такое вершина параболы?

    Вершина параболы

    Корень уравнения в этом случае указывает на вершину параболы. Если вспомнить формулу корня квадратного уравнения при ( displaystyle D=0), получим формулу вершины:

    Это тоже бывает очень полезно.

    Итак, всего возможны шесть разных вариантов расположения параболы. Вот они все на одном рисунке:

    А теперь порешаем задачки.

    Решение задач

    1. График какой из функций избражен на рисунке?

    2. Найдите сумму корней квадратного уравнения ( a<^<2>>+bx+c=0), если на рисунке приведен график функции ( y=a<^<2>>+bx+c):

    3. Найдите произведение корней квадратного уравнения ( a<^<2>>+bx+c=0), если на рисунке приведен график функции ( y=a<^<2>>+bx+c):

    4. По графику функции ( y=<^<2>>+bx+c) определите коэффициенты ( b) и ( c):

    Решения

    1. Первое: куда «смотрят» ветви параболы? Вниз. А что это значит? Правильно, ( displaystyle a

    Преобразования графиков функций (ЕГЭ 18. Задачи с параметром)

    Научились строить график какой-то функции? А что, если я теперь поменяю один из коэффициентов? Или «заключу» часть функции в модуль?

    Можно ли не строить для этого новый график, а просто передвинуть/растянуть старый?

    Можно! И на этом уроке мы научимся производить такие трансформации.

    Благодаря таким трансформациям мы станем понимать, как выглядят графики функций при всех значениях параметра и научимся решать задачи из ЕГЭ на эту тему.

    Наши курсы по подготовке к ЕГЭ по математике, информатике и физике

    К ЕГЭ можно подготовиться абсолютно бесплатно. У нас на сайте полно качественных материалов. Но вы должны знать что вы делаете.

    • У вас должен быть план, чтобы вы шли от простого к сложному и не «захлебнулись».
    • Вас должен кто-то проверять и указывать короткий путь, чтобы вы не теряли время.
    • Вас должен кто-то мотивировать, чтобы вы не бросили все.

    Если у вас с этим сложности, приходите к нам.

    И если вам нужен действительно высокий балл, приходите на наши курсы:

    Мы качественно готовим к ЕГЭ даже тех, у кого «нет способностей».

    Хочешь помочь?

    Поздравляю! Ты разблокировал достижение “Мастер параболы”

    Теперь ты знаешь все нюансы построения графика квадратичной функции (а если посмотрел вебинары, то и всех остальных элементарных функций!).

    Нравится ли тебе строить графики? Была ли эта статья полезна?

    Напиши нам в комментариях внизу. Поделись этой статьей с тем, кому нужна помощь.

    А если у тебя остались вопросы, задай их! И мы обязательно тебе ответим.

    Квадратичная функция – определение, уравнения, графики

    Задания на свойства и графики квадратичной функции вызывают, как показывает практика, серьезные затруднения. Это довольно странно, ибо квадратичную функцию проходят в 8 классе, а потом всю первую четверть 9-го класса “вымучивают” свойства параболы и строят ее графики для различных параметров.

    Это связано с тем, что заставляя учащихся строить параболы, практически не уделяют времени на “чтение” графиков, то есть не практикуют осмысление информации, полученной с картинки. Видимо, предполагается, что, построив десятка два графиков, сообразительный школьник сам обнаружит и сформулирует связь коэффициентов в формуле и внешний вид графика. На практике так не получается. Для подобного обобщения необходим серьезный опыт математических мини исследований, которым большинство девятиклассников, конечно, не обладает. А между тем, в ГИА предлагают именно по графику определить знаки коэффициентов.

    Не будем требовать от школьников невозможного и просто предложим один из алгоритмов решения подобных задач.

    Итак, функция вида y = ax 2 + bx + c называется квадратичной, графиком ее является парабола. Как следует из названия, главным слагаемым является ax 2 . То есть а не должно равняться нулю, остальные коэффициенты (b и с) нулю равняться могут.

    Посмотрим, как влияют на внешний вид параболы знаки ее коэффициентов.

    Самая простая зависимость для коэффициента а. Большинство школьников уверенно отвечает: ” если а > 0, то ветви параболы направлены вверх, а если а 0.

    y = 0,5x 2 – 3x + 1

    В данном случае а = 0,5

    А теперь для а 2 + b 0 + c = c. Получается, что у = с. То есть с – это ордината точки пересечения параболы с осью у. Как правило, эту точку легко найти на графике. И определить выше нуля она лежит или ниже. То есть с > 0 или с 0:

    Соответственно, если с = 0, то парабола обязательно будет проходить через начало координат:

    Сложнее с параметром b. Точка, по которой мы будем его находить, зависит не только от b но и от а. Это вершина параболы. Ее абсцисса (координата по оси х) находится по формуле хв = – b/(2а). Таким образом, b = – 2ахв. То есть, действуем следующим образом: на графике находим вершину параболы, определяем знак ее абсциссы, то есть смотрим правее нуля (хв > 0) или левее (хв 0, парабола пересекает ось у ниже нуля, значит с 0. Значит b = – 2ахв = -++ = -. b 0, b 0, вершина параболы лежит правее нуля. Следовательно, хв > 0. Значит b = – 2ахв = –+ = +. b > 0. Окончательно имеем: а 0, с > 0.

    Ветви направлены вверх, значит а > 0, парабола пересекает ось у ниже нуля, значит с 0. Окончательно имеем: а > 0, b > 0, с 0)

    Или ниже нуля (с 2 – 4:

    Руслан Александрович – репетитор по математике

    тел. моб. (495) 642 42 50. Звонить можно до 23:00.

    тел. моб. 8 (499) 723 68 84. Звонить можно до 23:00.

    тел. дом. 8 (925) 642 42 50. Звонить можно до 23:00.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: