Строительные стали: классификация, свойства, марки

Марки стали – таблица с маркировкой и расшифровкой

Любому специалисту, имеющему дело с металлом, знакомо понятие «марки стали». Расшифровка маркировки стальных сплавов дает возможность получить представление об их химическом составе и физических характеристиках. Разобраться в данной маркировке, несмотря на ее кажущуюся сложность, достаточно просто – важно только знать, по какому принципу она составляется.

Редкое производство обходится без стали, поэтому разбираться в его марках крайне важно

Обозначают сплав буквами и цифрами, по которым можно точно определить, какие химические элементы в нем содержатся и в каком количестве. Зная это, а также то, как каждый из таких элементов может влиять на готовый сплав, можно с высокой степенью вероятности определить, какие именно технические характеристики свойственны определенной марке стали.

Виды сталей и особенности их маркировки

Сталь представляет собой сплав железа с углеродом, при этом содержание последнего в ней составляет не более 2,14%. Углерод придает сплаву твердость, но при его избытке металл становится слишком хрупким.

Одним из важнейших параметров, по которому стали делят на различные классы, является химический состав. Среди сталей по данному критерию выделяют легированные и углеродистые, последние подразделяются на мало- (углерода до 0,25%), средне- (0,25–0,6%) и высокоуглеродистые (в них содержится больше 0,6% углерода).

Включая в состав стали легирующие элементы, ей можно придать требуемые характеристики. Именно таким образом, комбинируя вид и количественное содержание добавок, получают марки, обладающие улучшенными механическими свойствами, коррозионной устойчивостью, магнитными и электрическими характеристиками. Конечно, улучшать характеристики сталей можно и при помощи термообработки, но легирующие добавки позволяют делать это более эффективно.

По количественному составу легирующих элементов различают низко-, средне- и высоколегированные сплавы. В первых легирующих элементов не более 2,5%, в среднелегированных – 2,5–10%, в высоколегированных – более 10%.

Классификация сталей осуществляется и по их назначению. Так, выделяют инструментальные и конструкционные виды, марки, отличающиеся особыми физическими свойствами. Инструментальные виды используются для производства штамповых, мерительных, а также режущих инструментов, конструкционные – для выпуска продукции, применяемой в строительстве и сфере машиностроения. Из сплавов, отличающихся особыми физическими свойствами (также называемых прецизионными), изготавливают изделия, которые должны обладать особыми характеристиками (магнитными, прочностными и др.).

Классификация сталей по назначению

Стали противопоставляются друг другу и по особым химическим свойствам. К сплавам данной группы относятся нержавеющие, окалиностойкие, жаропрочные и др. Что характерно, нержавеющие стали могут быть коррозионностойкими и нержавеющими пищевыми – это разные категории.

Кроме полезных элементов, сталь включает и вредные примеси, к основным из которых относятся сера и фосфор. В ней также находятся газы в несвязанном состоянии (кислород и азот), что негативно отражается на ее характеристиках.

Если рассматривать основные вредные примеси, то фосфор увеличивает хрупкость сплава, особенно сильно проявляющуюся при низких температурах (так называемая хладноломкость), а сера вызывает появление трещин в металле, нагретом до высокой температуры (красноломкость). Фосфор, ко всему прочему, значительно уменьшает пластичность нагретого металла. По количественному содержанию этих двух элементов выделяют стали обыкновенного качества (не более 0,06–0,07% серы и фосфора), качественные (до 0,035%), высококачественные (до 0,025%) и особовысококачественные (сера – до 0,015%, фосфор – до 0,02%).

Маркировка сталей также указывает на то, в какой степени из их состава удален кислород. По уровню раскисления выделяют стали:

  • спокойного типа, обозначаемые буквосочетанием «СП»;
  • полуспокойные – «ПС»;
  • кипящие – «КП».

О чем говорит маркировка сталей

Расшифровать марку стали довольно просто, необходимо только владеть определенными сведениями. Конструкционные стали, обладающие обыкновенным качеством и не содержащие легирующих элементов, маркируют буквосочетанием «Ст». По цифре, идущей после букв в названии марки, можно определить, сколько в таком сплаве углерода (исчисляется в десятых долях процента). За цифрами могут идти буквы «КП»: по ним становится ясно, что данный сплав не до конца прошел процесс раскисления в печи, соответственно, он относится к категории кипящего. Если название марки не содержит таких букв, то сталь соответствует категории спокойной.

Химический состав углеродистых конструкционных сталей обыкновенного качества

Конструкционная нелегированная сталь, относящаяся к категории качественных, имеет в своем обозначении две цифры, по ним определяют среднее содержание в ней углерода (исчисляется в сотых долях процента).

Прежде чем приступить к рассмотрению марок тех сталей, которые включают легирующие добавки, следует разобраться в том, как данные добавки обозначаются. Маркировка легированных сталей может включать такие буквенные обозначения:

Список используемых легирующих добавок

Обозначение сталей с легирующими элементами

Как сказано выше, классификация сталей с легирующими элементами включает несколько категорий. Маркировка легированных сталей составляется по определенным правилам, знание которых позволяет достаточно просто определить категорию конкретного сплава и основную область его применения. В начальной части названий таких марок находятся цифры (две или одна), показывающие содержание углерода. Две цифры указывают на его среднее содержание в сплаве в сотых долях процента, а одна – в десятых. Есть и стали, не имеющие в начале названия марки цифр. Это означает, что углерод в этих сплавах содержится в пределах 1%.

Пример маркировки легированной стали

Буквы, которые можно увидеть за первыми цифрами названия марки, указывают на то, из чего состоит данный сплав. За буквами, дающими информацию о том или ином элементе в его составе, могут стоять или не стоять цифры. Если цифра есть, то по ней определяется (в целых процентах) среднее содержание указанного буквой элемента в составе сплава, а если цифры нет, значит, данный элемент содержится в пределах от 1 до 1,5%.

В конце маркировки отдельных видов сталей может стоять буква «А». Это говорит о том, что перед нами высококачественная сталь. К таким маркам могут относиться и углеродистые стали, и сплавы с легирующими добавками в своем составе. Согласно классификации, к данной категории сталей причисляются те, в которых сера и фосфор составляют не более 0,03%.

Читайте также:
Материалоемкость: определение понятия, применение, формулы, расчеты

Примеры маркировки сталей различных видов

Определение марки стали и причисление сплава к определенному виду – это задача, которая не должна вызывать никаких проблем у специалиста. Не всегда под рукой есть таблица, в которой дается расшифровка названий марок, но разобраться с этим помогут примеры, которые приведены ниже.

Содержание элементов в распространенных марках стали (нажмите для увеличения)

Конструкционные стали, не содержащие легирующих элементов, обозначаются буквосочетанием «Ст». Цифры, стоящие следом, – это содержание углерода, исчисляемое в сотых долях процента. Несколько иначе маркируются низколегированные конструкционные стали. К примеру, в стали марки 09Г2С 0,09% углерода, а легирующие добавки (марганец, кремний и др.) содержатся в ней в пределах 2,5%. Очень похожие по своей маркировке 10ХСНД и 15ХСНД отличаются разным количеством углерода, а доля каждого легирующего элемента в них составляет не больше 1%. Именно поэтому после букв, обозначающих каждый легирующий элемент в таком сплаве, не стоит никаких цифр.

20Х, 30Х, 40Х и др. – так маркируются конструкционные легированные стали, преобладающим легирующим элементом в них является хром. Цифра в начале такой марки – это содержание углерода в рассматриваемом сплаве, исчисляемое в сотых долях процента. За буквенным обозначением каждого легирующего элемента может быть проставлена цифра, по которой и определяют его количественное содержание в сплаве. Если ее нет, то указанного элемента в стали содержится не больше 1,5%.

Можно рассмотреть пример обозначения хромокремнемарганцевой стали 30ХГСА. Она, согласно маркировке, состоит из углерода (0,3%), марганца, кремния, а также хрома. Каждого из данных элементов в ней содержится в границах 0,8–1,1%.

Как расшифровать маркировку сталей?

Чтобы расшифровка обозначения различных видов сталей не вызывала затруднений, следует хорошо знать, какими они бывают. Отдельные категории сталей имеют особенную маркировку. Их принято обозначать определенными буквами, что позволяет сразу понять и назначение рассматриваемого металла, и его ориентировочный состав. Рассмотрим некоторые из таких марок и разберемся в их обозначении.

Свойства и назначение конструкционных легированных сталей

Конструкционные стали, специально предназначенные для изготовления подшипников, можно узнать по букве «Ш», данная литера ставится в самом начале их маркировки. После нее в названии марки идет буквенное обозначение соответствующих легирующих добавок, а также цифры, по которым узнают количественное содержание этих добавок. Так, в сталях марок ШХ4 и ШХ15, кроме железа с углеродом, содержится хром в количестве 0,4 и 1,5%, соответственно.

Буквой «К», которая стоит после первых цифр в названии марки, сообщающих о количественном содержании углерода, обозначают конструкционные нелегированные стали, используемые для производства сосудов и паровых котлов, работающих под высоким давлением (20К, 22К и др.).

Качественные легированные стали, которые обладают улучшенными литейными свойствами, можно узнать по букве «Л», стоящей в самом конце маркировки (35ХМЛ, 40ХЛ и др.).

Некоторую сложность, если не знать особенностей маркировки, может вызвать расшифровка марок строительной стали. Сплавы данной категории обозначают буквой «С», которую ставят в самом начале. Цифры, следующие за ней, указывают на минимальный предел текучести. В таких марках также используются дополнительные буквенные обозначения:

  • литера Т – термоупрочненный прокат;
  • буква К – сталь, отличающаяся повышенной коррозионной устойчивостью;
  • литера Д – сплав, характеризующийся повышенным содержанием меди (С345Т, С390К и др.).

Нелегированные стали, относящиеся к категории инструментальных, обозначают буквой «У», она проставляется в начале их маркировки. Цифра, идущая за данной буквой, выражает количественное содержание углерода в рассматриваемом сплаве. Стали данной категории могут быть качественными и высококачественными (их можно определить по букве «А», она проставляется в конце названия марки). В их маркировке может содержаться буква «Г», что означает повышенное содержание марганца (У7, У8, У8А, У8ГА и др.).

Инструментальные стали, содержащие легирующие элементы в своем составе, маркируются аналогично с легированными конструкционными (ХВГ, 9ХВГ и др.).

Состав легированных инструментальных сталей (%)

Маркировка тех сталей, которые входят в категорию быстрорежущих, начинается с буквы «Р», за которой идут цифры, указывающие на количественное содержание вольфрама. В остальном марки таких сплавов называются по стандартному принципу: буквы, обозначающие элемент, и, соответственно, цифры, отражающие его количественное содержание. В обозначении таких сталей не указывается хром, так как его стандартное содержание в них составляет около 4%, а также углерод, количество которого пропорционально содержанию ванадия. Если количество ванадия превышает 2,5%, то его буквенное обозначение и количественное содержание проставляют в самом конце маркировки (З9, Р18, Р6М5Ф3 и др.).

Влияние некоторых добавок на свойства стали

По-особому маркируются нелегированные стали, относящиеся к категории электротехнических (их еще часто называют чистым техническим железом). Невысокое электрическое сопротивление таких металлов обеспечивается за счет того, что их состав характеризуется минимальным содержанием углерода – менее 0,04%. В обозначении марок таких сталей нет букв, только цифры: 10880, 20880 и др. Первая цифра указывает на классификацию по типу обработки: горячекатаная или кованная – 1, калиброванная – 2. Вторая цифра связана с категорией коэффициента старения: 0 – ненормируемый, 1 – нормируемый. Третья цифра указывает на группу, к которой данная сталь относится по нормируемой характеристике, принятой за основную. По четвертой и пятой цифрам определяется само значение нормируемой характеристики.

Принципы, по которым осуществляется обозначение стальных сплавов, были разработаны еще в советский период, но и по сей день успешно используются не только в России, но также в странах СНГ. Обладая сведениями о той или иной марке стали, можно не только определять ее химический состав, но и эффективно подбирать металлы с требуемыми характеристиками.

Разбираться в данном вопросе важно как специалистам, разрабатывающим и проектирующим различные конструкции из металла, так и тем, кто часто работает с различными сталями и занимается изготовлением из них деталей разного назначения.

Статьи

Сталь – деформируемый (ковкий) сплав железа с углеродом (до 2,14%) и другими элементами. Получают, главным образом, из смеси чугуна со стальным ломом в кислородных конвертерах, мартеновских печах и электропечах. Сплав железа с углеродом, содержащий более 2,14% углерода, называют чугуном.

Читайте также:
Конструкционные материалы: определение, характеристики и применение

99% всей стали – материал конструкционный в широком смысле слова: включая стали для строительных сооружений, деталей машин, упругих элементов, инструмента и для особых условий работы – теплостойкие, нержавеющие, и т.п. Его главные качества – прочность (способность выдерживать при работе достаточные напряжения), пластичность (способность выдерживать достаточные деформации без разрушения как при производстве конструкций, так в местах перегрузок при их эксплуатации), вязкость (способность поглощать работу внешних сил, препятствуя распространению трещин), упругость, твердость, усталость, трещиностойкость, хладостойкость, жаропрочность.

Для изготовления подшипников широко используют шарикоподшипниковые хромистые стали ШХ15 и ШХ15СГ. Шарикоподшипниковые стали обладают высокой твердостью, прочностью и контактной выносливостью.

Пружины, рессоры и другие упругие элементы работают в области упругой деформации материала. В то же время многие из них подвержены воздействию циклических нагрузок. Поэтому основные требования к пружинным сталям – это обеспечение высоких значений пределов упругости, текучести, выносливости, а также необходимой пластичности и сопротивления хрупкому разрушению (55С2, 60С2А, 50ХФА, 30Х13, 03Х12Н10Д2Т).

Высокопрочные стали имеют высокую прочность при достаточной пластичности (среднеуглеродистая легированная сталь 40ХН2МА), высокой конструктивной прочностью, малой чувствительностью к надрезам, высоким сопротивлением хрупкому разрушению, низким порогом хладноломкости, хорошей свариваемостью.

Классификация сталей и сплавов производится:

  • по химическому составу;
  • по структурному составу;
  • по качеству (по способу производства и содержанию вредных примесей);
  • по степени раскисления и характеру затвердевания металла в изложнице;
  • по назначению.

Химический состав
По химическому составу углеродистые стали делят в зависимости от содержания углерода на следующие группы:

  • малоуглеродистые – менее 0,3% С;
  • среднеуглеродистые – 0,3. 0,7% С;
  • высокоуглеродистые – более 0,7 %С.
  • низколегированные – менее 2,5%;
  • среднелегированные – 2,5. 10%;
  • высоколегированные – более 10%.

Структурный состав
Легированные стали и сплавы делятся также на классы по структурному составу:

  • в отожженном состоянии – доэвтектоидный, заэвтектоидный, ледебуритный (карбидный), ферритный, аустенитный;
  • в нормализованном состоянии – перлитный, мартенситный и аутенитный.

К перлитному классу относят углеродистые и легированные стали с низким содержанием легирующих элементов, к мартенситному – с более высоким и к аустенитному – с высоким содержанием легирующих элементов.

Классификация стали по содержанию примесей

По качеству, то есть по способу производства и содё примесей, стали и сплавы делятся на четыре группы
Классификация сталей по качеству

Группа S, % Р, %
Обыкновенного качества (рядовые) менее 0,06 менее 0,07
Качественные менее 0,04 менее 0,035
Высококачественные менее 0,025 менее 0,025
Особовысококачественные менее 0,015 менее 0,025

Стали обыкновенного качества

Стали обыкновенного качества (рядовые) по химическому составу -углеродистые стали, содержащие до 0,6% С. Эти стали выплавляются в конвертерах с применением кислорода или в больших мартеновских печах. Примером данных сталей могут служить стали СтО, СтЗсп, Ст5кп.
Стали обыкновенного качества, являясь наиболее дешевыми, уступают по механическим свойствам сталям других классов.

Стали качественные

Стали качественные по химическому составу бывают углеродистые или легированные (08кп, 10пс, 20). Они также выплавляются в конвертерах или в основных мартеновских печах, но с соблюдением более стро-гих требований к составу шихты, процессам плавки и разливки.
Углеродистые стали обыкновенного качества и качественные по степени раскисления и характеру затвердевания металла в изложнице делятся на спокойные, полуспокойные и кипящие. Каждый из этих сортов отличается содержанием кислорода, азота и водорода. Так в кипящих сталях содержится наибольшее количество этих элементов.

Стали высококачественные

Стали высококачественные выплавляются преимущественно в электропечах, а особо высококачественные – в электропечах с электрошлаковым переплавом (ЭШП) или другими совершенными методами, что гарантирует повышенную чистоту по неметаллическим включениям (содержание серы и фосфора менее 0,03%) и содержанию газов, а следовательно, улучшение механических свойств. Это такие стали как 20А, 15Х2МА.

Стали особовысококачественные

Особовысококачественные стали подвергаются электрошлаковому переплаву, обеспечивающему эффективную очистку от сульфидов и оксидов. Данные стали выплавляются только легированными. Их производят в электропечах и методами специальной электрометаллургии. Содержат не более 0,01% серы и 0,025% фосфора. Например: 18ХГ-Ш, 20ХГНТР-Ш.

Классификация стали по назначению

По назначению стали и сплавы классифицируются на конструкционные, инструментальные и стали с особыми физическими и химическими свойствами.

Конструкционные стали

Конструкционные стали принято делить на строительные, для холодной штамповки, цементируемые, улучшаемые, высокопрочные, рессорно-пружинные, шарикоподшипниковые, автоматные, коррозионно-стойкие, жаростойкие, жаропрочные, износостойкие стали.

Строительные стали

К строительным сталям относятся углеродистые стали обыкновенного качества, а также низколегированные стали. Основное требование к строительным сталям – их хорошая свариваемость. Например: С255, С345Т, С390К, С440Д.

Стали для холодной штамповки

Для холодной штамповки применяют листовой прокат из низкоуглеродистых качественных марок стали 08Ю, 08пс и 08кп.

Цементируемые стали

Цементируемые стали применяют для изготовления деталей, работающих в условиях поверхностного износа и испытывающих при этом динамические нагрузки. К цементируемым относятся малоуглеродистые стали, содержащие 0,1-0,3% углерода (такие, как 15, 20, 25), а также некоторые легированные стали (15Х, 20Х, 15ХФ, 20ХН 12ХНЗА, 18Х2Н4ВА, 18Х2Н4МА, 18ХГТ, ЗОХГТ, 20ХГР).

Улучшаемые стали

К улучшаемым сталям относят стали, которые подвергают улучшению – термообработке, заключающейся в закалке и высоком отпуске. К ним относятся среднеуглеродистые стали (35, 40, 45, 50), хромистые стали (40Х, 45Х, 50Х), хромистые стали с бором (ЗОХРА, 40ХР), хромоникелевые, хромокремниемарганцевые, хромоникельмолибденовые стали.

Читайте также:
Технология сварки: дуговая, ТИГ, электрошлаковая, электронно-лучевая

Высокопрочные стали

Высокопрочные стали – это стали, у которых подбором химического состава и термической обработкой достигается предел прочности примерно вдвое больший, чем у обычных конструкционных сталей. Такой уровень прочности можно получить в среднеуглеродистых легированных сталях – таких, как ЗОХГСН2А, 40ХН2МА, ЗОХГСА, 38ХНЗМА, ОЗН18К9М5Т, 04ХИН9М2Д2ТЮ.

Пружинные стали

Пружинные (рессорно-пружинные) стали сохраняют в течение длительного времени упругие свойства, поскольку имеют высокий предел упругости, высокое сопротивление разрушению и усталости. К пружинным относятся углеродистые стали (65, 70) и стали, легированные элементами, которые повышают предел упругости – кремнием, марганцем, хромом, вольфрамом, ванадием, бором (60С2, 50ХГС, 60С2ХФА, 55ХГР).

Подшипниковые стали

Подшипниковые (шарикоподшипниковые) стали имеют высокую прочность, износоустойчивость, выносливость. К подшипниковым предъявляют повышенные требования на отсутствие различных включений, макро- и микропористости. Обычно шарикоподшипниковые стали характеризуются высоким содержанием углерода (около 1%) и наличием хрома (ШХ9, ШХ15).

Автоматные стали

Автоматные стали используют для изготовления неответственных деталей массового производства (винты, болты, гайки и др.)> обрабатываемых на станках-автоматах. Эффективным металлургическим приемом повышения обрабатываемости резанием является введение в сталь серы, селена, теллура, а также свинца, что способствует образованию короткой и ломкой стружки, а также уменьшает трение между резцом и стружкой. Недостаток автоматных сталей – пониженная пластичность. К автоматным сталям относятся такие стали, как А12, А20, АЗО, А40Г, АС11, АС40, АЦ45Г2, АСЦЗОХМ, АС20ХГНМ.

Износостойкие стали

Износостойкие стали применяют для деталей, работающих в условиях абразивного трения, высокого давления и ударов (крестовины железнодорожных путей, траки гусеничных машин, щеки дробилок, черпаки землеройных машин, ковши экскаваторов и др.)- Пример износостойкой стали – высокомарганцовистая сталь 110Г13Л.

Коррозионно-стойкие (нержавеющие) стали

Коррозионно-стойкие (нержавеющие) стали – легированные стали с большим содержанием хрома (не менее 12%) и никеля. Хром образует на поверхности изделия защитную (пассивную) оксидную пленку. Углерод в нержавеющих сталях – нежелательный элемент, а чем больше хрома, тем выше коррозионная стойкость.
Структура для наиболее характерных сплавов этого назначения может быть:

  • ферритно-карбидной и мартенситной (12X13, 20X13, 20Х17Н2, 30X13, 40X13, 95X18 – для слабых агрессивных сред (воздух, вода, пар);
  • ферритной (15X28) – для растворов азотной и фосфорной кислот;
  • аустенитной (12Х18НЮТ) – в морской воде, органических и азотной кислотах, слабых щелочах;
  • мартенситно-стареющей (ЮХ17Н13МЗТ, 09Х15Н8Ю) – в фосфорной, уксусной и молочной кислотах.

Сплав 06ХН28МТ может эксплуатироваться в условиях горячих (до 60°С) фосфорной и серной (концентрации до 20%) кислот.
Коррозионностойкие стали и сплавы классифицируют в зависимости от агрессивности среды, в которой они используются, и по их основному потребительскому свойству на собственно коррозионно-стойкие, жаростойкие, жаропрочные и криогенные.

Коррозионно-стойкие стали

Изделия из собственно коррозионностойких сталей (лопатки турбин, клапаны гидравлических прессов, пружины, карбюраторные иглы, диски, валы, трубы и др.) работают при температуре эксплуатации до 550°С.

Жаропрочные стали

Жаропрочные стали способны работать в нагруженном состоянии при высоких температурах в течение определенного времени и при этом обладают достаточной жаростойкостью. Данные стали и сплавы применяются для изготовления труб, клапанных, паро- и газотурбинных деталей (роторы, лопатки, диски и др.).
Для жаропрочных и жаростойких машиностроительных сталей используются малоуглеродистые (0,1-0,45% С) и высоколегированные (Si, Cr, Ni, Со и др.). Жаропрочные стали и сплавы в своем составе обязательно содержат никель, который обеспечивает существенное увеличение предела длительной коррозионной прочности при незначительном увеличении предела текучести и временного сопротивления, и марганец. Они могут дополнительно легироваться молибденом, вольфрамом, ниобием, титаном, бором, иодом и др. Так, микролегирование бором, а также редкоземельными и некоторыми щелочноземельными металлами повышает такие характеристики, как число оборотов при кручении, пластичность и вязкость при высоких температурах.
Рабочие температуры современных жаропрочных сплавов составляют примерно 45-80% от температуры плавления. Эти стали классифицируют по температуре эксплуатации (ГОСТ 20072-74):
при 400-550°С – 15ХМ, 12Х1МФ, 25Х2М1Ф, 20ХЗМВФ;
при 500-600°С – 15Х5М, 40ХЮС2М, 20X13;
при 600-650°С – 12Х18Н9Т, 45Х14Н14В2М, ЮХЦН23ТЗМР,
ХН60Ю, ХН70Ю, ХН77ТЮР, ХН56ВМКЮ, ХН62МВКЮ.

Жаростойкие стали

Жаростойкие (окалиностойкие) стали обладают стойкостью против химического разрушения поверхности в газовых средах, в том числе серосодержащих, при температурах +550-1200°С в воздухе, печных газах (15X5, 15Х6СМ, 40Х9С2, ЗОХ13Н7С2, 12X17, 15X28), окислительных и науглероживающих средах (20Х20Н14С2, 20Х23Н18) и работают в ненагруженном или слабонагруженном состоянии, так как могут проявлять ползучесть при приложении больших нагрузок. Жаростойкие стали характеризуют по температуре начала интенсивного окисления. Величина этой температуры определяется содержанием хрома в сплаве. Так, при . 15% Cr температура эксплуатации изделий составляет +950°С, а при 25% Cr до +130СГС. Жаростойкие стали также легируют никелем, кремнием, алюминием.

Криогенные стали

Криогенные машиностроительные стали и сплавы (ГОСТ 5632-72) по химическому составу являются низкоуглеродистыми (0,10% С) и высоколегированными (Cr, N1, Mn и др.) сталями аустенитного класса (08Х18НЮ, 12Х18НЮТ, ОЗХ20Н16АГ6, ОЗХ13АП9 и др.). Основными потребительскими свойствами этих сталей являются пластичность и вяз-кость, которые с понижением температуры (от +20 до -196°С) либо не меняются, либо мало уменьшаются, т.е. не происходит резкого уменьшения вязкости, характерного при хладноломкости. Криогенные машиностроительные стали классифицируют по температуре эксплуатации в диапазоне от -196 до -296°С и используют для изготовления деталей криогенного оборудования.

Инструментальные стали

Инструментальные стали по назначению делят на стали для режущих, измерительных инструментов, штамповые стали.

Стали для режущих инструментов

Стали для режущих инструментов должны быть способными сохранять высокую твердость и режущую способность продолжительное время, том числе и при нагреве. В качестве сталей для режущих инструментов применяют углеродистые, легированные инструментальные, быстрорежущие стали.

Читайте также:
Сталь: основные характеристики и свойства, классификация и марки
Углеродистые инструментальные стали

Углеродистые инструментальные стали содержат 0,65-1,32% углерода. Например, стали марок У7, У7А, У13, У13А. К данной группе, помимо нелегированных углеродистых инструментальных сталей, условно относят также стали с небольшим содержанием легирующих элементов, которые не сильно отличаются от углеродистых.

Легированные инструментальные стали

В данную группу сталей входят стали, содержащие легирующие элементы в количестве 1-3%. Легированные инструментальные стали имеют повышенную (по сравнению с углеродистыми инструментальными сталями) теплостойкость – до +300°С. Наиболее широко используют стали 9ХС (сверла, фрезы, зенкеры), ХВГ (протяжки, развертки), ХВГС (фрезы, зенкеры, сверла больших диаметров).

Быстрорежущие стали

Быстрорежущие стали применяют для изготовления различного режущего инструмента, работающего на высоких скоростях резания, так как они обладают высокой теплостойкостью – до +650°С. Наибольшее распространение получили быстрорежущие стали марок Р9, Р18, Р6М5, Р9Ф5, РЮК5Ф5.

Стали для измерительных инструментов

Инструментальные стали для измерительных инструментов (плиток, калибров, шаблонов) помимо твердости и износостойкости должны сохранять постоянство размеров и хорошо шлифоваться. Обычно применяют стали У8. У12, X, 12X1, ХВГ, Х12Ф1. Измерительные скобы, шкалы, линейки и другие плоские и длинные инструменты изготовляют из листовых сталей 15, 15Х. Для получения рабочей поверхности с высокой твердостью и износостойкостью инструменты подвергают цементации и закалке.

Штамповые стали

Штамповые стали обладают высокой твердостью и износостойкостью, прокаливаемостью и теплостойкостью.

Стали для штампов холодного деформирования

Эти стали должны обладать высокой твердостью, износостойкостью и прочностью, сочетающейся с достаточной вязкостью, также должны быть теплостойкими. Например Х12Ф1, Х12М, Х6ВФ, 6Х5ВЗМФС, 7ХГ2ВМ. Во многих случаях для изготовления штампов для холодного деформирования используют быстрорежущие стали.

Стали для штампов горячего деформирования

Эти стали должны иметь высокие механические свойства (прочность и вязкость) при повышенных температурах и обладать износостойкостью, окалиностойкостью, разгаростойкостью и высокой теплопроводностью. Примером таких сталей могут служить стали 5ХНМ, 5ХНВ, 4ХЗВМФ, 4Х5В2ФС, ЗХ2В8Ф, 4Х2В5МФ.

Валковые стали

Данные стали применяют для рабочих, опорных и прочих валков прокатных станов, бандажей составных опорных валков, ножей для холодной резки металла, обрезных матриц и пуансонов. К валковым сталям относят такие марки стали, как 90ХФ, 9X1, 55Х, 60ХН, 7Х2СМФ.

Требования к стали для валков

Высокая прокаливаемость. Для обеспечения высокой закаливаемости необходимо использование таких марок стали, устойчивость переохлажденного аустенита которых в обеих областях превращения, во возможности, достаточна для развития мартенситного превращения при минимальных скоростях охлаждения, например, в масле.

Глубокая прокаливаемость. Прокаливаемость – это глубина закаленного слоя или, другими словами, глубина проникновения мартенсита. Она зависит от химического состава, размеров деталей и условий охлаждения. Легирующие элементы, а также увеличение содержания углерода (0,8%) в стали способствуют увеличению ее прокаливаемости, поэтому необходимую прокаливаемость обеспечивают за счет оптимизации химического состава стали. Для данного типа стали необходима практически сквозная прокаливаемость, так как при этом обеспечивается жесткость валка, без которой затруднительно получение высокой точности проката. Среди элементов, увеличивающих прокаливаемость – кремний и бор.

Высокая износостойкость. Необходима для безаварийной работы стана. При высокой износостойкости образование абразивных частиц износа не происходит, система подшипников работает более надежно.

Высокая контактная прочность. Контактная прочность рабочего слоя валков должна быть выше контактных напряжений, возникающих в процессе прокатки с учетом естественных нагрузок.

Минимальная склонность к деформации и короблению в процессе термической обработки и неизменность размеров в процессе эксплуатации.

Удовлетворительная обрабатываемость при мехобработке, хорошая шлифуемость и полируемость для обеспечения высокой чистоты поверхности валков и, следовательно, высокого качества поверхности прокатываемого материала.

Технические жидкости

Классификация технических жидкостей. Назначение, свойства и условия применения охлаждающих жидкостей.

Жидкости для гидросистем: назначение, свойства, условия применения.

Технические жидкости – маловязкие жидкости, предназначенные для обеспечения выполнения машинами и механизмами рабочих функций. Общее для всех технических жидкостей – отсутствие требований к смазывающим свойствам.

По назначению технические жидкости подразделяют на амортизаторные, антиобледенительные, гидравлические , охлаждающие, промывочные, пусковые, разделительные, смазочно-охлаждающие и тормозные.

Амортизаторные жидкости используют для заливки телескопических, рычажно-кулачковых и др. гидравлических амортизаторов колесных и гусеничных транспортных машин с целью гашения механических колебаний путем поглощения кинетической энергии движущихся масс. Приготовляют из нефтяных дистиллятов селективной очистки смешением с кремнийорганическими жидкостями (8-10% по массе). Вязкость при 100°С для колесных машин 3-4, для гусеничных машин 4-5 мм 2 /с. Разновидность амортизаторных жидкостей-применяемые в артиллерии противооткатные жидкости.

Охлаждающие жидкости применяют в системах охлаждения двигателей внутреннего сгорания, радиоэлектронных системах и др. для поглощения и отвода 25-35% выделяющейся при работе теплоты и предупреждения перегрева деталей. В качестве охлаждающих жидкостей используют воду и антифризы.

Промывочные жидкости служат для очистки деталей и масляных систем и иных внутренних полостей механизмов от органических загрязнений. При контакте с загрязненными поверхностями промывочные жидкости растворяют или размягчают лаковые и смолистые отложения. Как правило, эти жидкости состоят из смеси нефтяных дистиллятов (легких масел, керосина, газойля и т. п.) с растворителями и моющими средствами (фенолы, кетоны, гликолевые эфиры, толуол, ксилол, тетралин, хлорсодержащие соед. и т. д.). Широко распространены также негорючие жидкости на водной основе.

Пусковые жидкости, впрыскиваемые в топливную систему двигателей внутренне сгорания, предназначены для облегчения их пуска при низких температурах. Характеризуются высокой испаряемостью и образуют в цилиндрах двигателей горючую смесь. Получают смешением диэтилового эфира с низкокипящими углеводородами (петролейным эфиром и др.), изопропилнитратом и небольшим кол-вом (до 10% по массе) смазочного масла. Пусковые жидкости обладают высоким давлением паров, низкой температурой самовоспламенения и широкими пределами воспламеняемости.

Тормозные жидкости используют в гидравлических тормозных системах транспортных машин. Выполняют функции гидравлического тела и смазочной среды при перемещении поршня в главном тормозном цилиндре. При работе привода тормозной системы давление в жидкостях достигает 10-12 МПа. Тормозные жидкости производят на основе касторового масла (смесь 60-40% масла и 40-60% изо-амилового спирта) или гликолей разной молекулярной массы. Эти жидкости должны иметь вязкость не менее 1,5 мм 2 /с при 100°С и не более 1800 мм 2 /с при – 40°С.

Читайте также:
Деформация металла - физическая природа процесса и его виды

Во все технические жидкости вводят, как правило, антикоррозионные присадки, в амортизационные, гидравлические и тормозные, кроме того, вязкостные, противоизносные и антиокислительные присадки, а в охлаждающие-антипенные присадки.

По назначению технические жидкости подразделяют на:

· амортизационные для заливки телескопических, рычажно-кулачковых и др. гидравлич. амортизаторов колесных и гусеничных транспортных машин с целью гашения мех. колебаний путем поглощения кинетич. энергии движущихся масс
· антиобледенительные для предотвращения обледенения передних кромок крыльев и лопастей винтов, стекол пилотских кабин и иных элементов самолетов и вертолетов, а также стекол автомобилей, тепловозов и т. п.
· охлаждающие применяют в системах охлаждения двигателей внутр. сгорания, радиоэлектронных системах и др. для поглощения и отвода 25-35% выделяющейся при работе теплоты и предупреждения перегрева деталей.
· промывочные для очистки деталей и масляных систем и иных внутр. полостей механизмов от орг. загрязнений. При контакте с загрязненными пов-стями промывочные жидкости растворяют или размягчают лаковые и смолистые отложения.
· пусковые впрыскиваемые в топливную систему двигателей внутр. сгорания, предназначены для облегчения их пуска при низких т-рах.
· разделительные применяют в измерит. приборах (манометры, мановакуумметры, расходомеры и т. д.) с целью предотвращения контакта рабочих жидкостей с агрессивными средами
· тормозные используют в гидравлич. тормозных системах транспортных машин. Выполняют ф-ции гидравлич. тела и смазочной среды при перемещении поршня в главном тормозном цилиндре.

Технические жидкости, маловязкие жидкости, предназначенные для обеспечения выполнения машинами и механизмами рабочих функций. Общее для всех технических жидкостей – отсутствие требований к смазывающим свойствам. По назначению технические жидкости подразделяют на амортизаторные, антиобледенительные, гидравлические (см. Гидравлические жидкости), охлаждающие, промывочные, пусковые, разделительные, смазочно-охлаждающие и тормозные.

Амортизаторные жидкости используют для заливки телескопических, рычажно-кулачковых и др. гидравлич. амортизаторов колесных и гусеничных транспортных машин с целью гашения мех. колебаний путем поглощения кинетич. энергии движущихся масс. Приготовляют из нефтяных дистиллятов селективной очистки смешением с крем-нийорг. жидкостями (8-10% по массе). Вязкость при 100 °С для колесных машин 3-4, для гусеничных машин 4-5 мм 2 /с. Разновидность амортизаторных жидкостей-применяемые в артиллерии противооткатные жидкости.

Антиобледенительные жидкости предназначены для предотвращения обледенения передних кромок крыльев и лопастей винтов, стекол пилотских кабин и иных элементов поверхности самолетов и вертолетов, а также стекол автомобилей, тепловозов и т. п. Такие жидкости растворяют влагу и кристаллы льда на защищаемой поверхности с образованием раствора с низкой температурой замерзания; кроме того, пленка жидкости ослабляет сцепление льда с поверхностью, что облегчает его удаление встречным потоком воздуха. Антиобледенит. жидкостями чаще всего служат водные растворы спиртов (этилового, изопропилового, этиленгликоля и др.).

Охлаждающие жидкости применяют в системах охлаждения двигателей внутр. сгорания, радиоэлектронных системах и др. для поглощения и отвода 25-35% выделяющейся при работе теплоты и предупреждения перегрева деталей. В качестве охлаждающих жидкостей используют воду и антифризы.

Промывочные жидкости служат для очистки деталей и масляных систем и иных внутр. полостей механизмов от орг. загрязнений. При контакте с загрязненными поверхностями промывочные жидкости растворяют или размягчают лаковые и смолистые отложения. Как правило, эти жидкости состоят из смеси нефтяных дистиллятов (легких масел, керосина.газойля

и т. п.) с растворителями и моющими ср-вами (фенолы, кетоны. гликолевые эфиры, толуол. ксилол. тетра-лин, хлорсодержащие соед. и т. д.). Широко распространены также негорючие жидкости на водной основе.

Пусковые жидкости, впрыскиваемые в топливную систему двигателей внутр. сгорания, предназначены для облегчения их пуска при низких температурах. Характеризуются высокой испаряемостью и образуют в цилиндрах двигателей горючую смесь. Получают смешением диэтилового эфира с низкокипящими углеводородами (петролейным эфиром и др.), изопропилнитратом и небольшим кол-вом (до 10% по массе) смазочного масла. Пусковые жидкости обладают высоким давлением паров, низкой температурой самовоспламенения и широкими пределами воспламеняемости.

Разделительные жидкости применяют в измерит. приборах (манометры, мановакуумметры, расходомеры и т. д.) с целью предотвращения контакта рабочих жидкостей с агрессивными средами (напр., H2SO4, HNO3, H2O2, C12, Вr2). Приготовляют на основе хлор- и хлорфторуглеродов, а также полисилоксанов; вязкость 7-27 мм 2 /с при 50 °С. Характеризуются высокой стабильностью против окисления.

Тормозные жидкости используют в гидравлич. тормозных системах транспортных машин. Выполняют функции гидравлич. тела и смазочной среды при перемещении поршня в главном тормозном цилиндре. При работе привода тормозной системы давление в жидкостях достигает 10-12 МПа. Тормозные жидкости производят на основе касторового масла (смесь 60-40% масла и 40-60% изо-амилового спирта) или гликолей разной мол. массы. Эти жидкости должны иметь вязкость не менее 1,5 мм 2 /с при 100 °С и не более 1800 мм 2 /с при – 40 °С.

Во все технические жидкости вводят, как правило, антикоррозионные присадки, в амортизационные, гидравлич. и тормозные, кроме того,-вязкостные, противоизносные и антиокислительные, а в охлаждающие-антипенные присадки. См. также Смазочно-охлаждающие жидкости.

Лит.: Топлива, смазочные материалы, технические жидкости. Ассортимент и применение. Справочное издание, под ред. В. М. Школьникова, М., 1989.

ТЕХНИЧЕСКИЕ ЖИДКОСТИ

маловязкие жидкости, предназначенные для обеспечения выполнения машинами и механизмами рабочих ф-ций. Общее для всех Т. ж.-отсутствие требований к смазывающим св-вам. По назначению Т. ж. подразделяют на амортизаторные, антиобледе-нительные, гидравлические (см. Гидравлические жидкости), охлаждающие, промывочные, пусковые, разделительные, смазочно-охлаждающие и тормозные.

Читайте также:
Ликвация: описание процесса в стали, польза, вред и методы устранения

Амортизаторные жидкости используют для заливки телескопических, рычажно-кулачковых и др. гидравлич. амортизаторов колесных и гусеничных транспортных машин с целью гашения мех. колебаний путем поглощения кинетич. энергии движущихся масс. Приготовляют из нефтяных дистиллятов селективной очистки смешением с крем-нийорг. жидкостями (8-10% по массе). Вязкость при 100 °С для колесных машин 3-4, для гусеничных машин 4-5 мм 2 /с. Разновидность амортизаторных жидкостей-применяемые в артиллерии противооткатные жидкости.

Антиобледенительные жидкости предназначены для предотвращения обледенения передних кромок крыльев и лопастей винтов, стекол пилотских кабин и иных элементов пов-сти самолетов и вертолетов, а также стекол автомобилей, тепловозов и т. п. Такие жидкости растворяют влагу и кристаллы льда на защищаемой пов-сти с образованием р-ра с низкой т-рой замерзания; кроме того, пленка жидкости ослабляет сцепление льда с пов-стью, что облегчает его удаление встречным потоком воздуха. Антиобледенит. жидкостями чаще всего служат водные р-ры спиртов (этилового, изопропилового, этиленгликоля и др.).

Охлаждающие жидкости применяют в системах охлаждения двигателей внутр. сгорания, радиоэлектронных системах и др. для поглощения и отвода 25-35% выделяющейся при работе теплоты и предупреждения перегрева деталей. В качестве охлаждающих жидкостей используют воду и антифризы.

Промывочные жидкости служат для очистки деталей и масляных систем и иных внутр. полостей механизмов от орг. загрязнений. При контакте с загрязненными пов-стями промывочные жидкости растворяют или размягчают лаковые и смолистые отложения. Как правило, эти жидкости состоят из смеси нефтяных дистиллятов (легких масел, керосина, газойля и т. п.) с р-рителями и моющими ср-вами (фенолы, кетоны, гликолевые эфиры, толуол, ксилол, тетра-лин, хлорсодержащие соед. и т. д.). Широко распространены также негорючие жидкости на водной основе.

Пусковые жидкости, впрыскиваемые в топливную систему двигателей внутр. сгорания, предназначены для облегчения их пуска при низких т-рах. Характеризуются высокой испаряемостью и образуют в цилиндрах двигателей горючую смесь. Получают смешением диэтилового эфира с низкокипящими углеводородами (петролейным эфиром и др.), изопропилнитратом и небольшим кол-вом (до 10% по массе) смазочного масла. Пусковые жидкости обладают высоким давлением паров, низкой т-рой самовоспламенения и широкими пределами воспламеняемости.

Разделительные жидкости применяют в измерит. приборах (манометры, мановакуумметры, расходомеры и т. д.) с целью предотвращения контакта рабочих жидкостей с агрессивными средами (напр., H 2 SO 4 , HNO 3 , H 2 O 2 , C1 2 , Вr 2 ). Приготовляют на основе хлор- и хлорфторуглеродов, а также полисилоксанов; вязкость 7-27 мм 2 /с при 50 °С. Характеризуются высокой стабильностью против окисления.

Тормозные жидкости используют в гидравлич. тормозных системах транспортных машин. Выполняют ф-ции гидравлич. тела и смазочной среды при перемещении поршня в главном тормозном цилиндре. При работе привода тормозной системы давление в жидкостях достигает 10-12 МПа. Тормозные жидкости производят на основе касторового масла (смесь 60-40% масла и 40-60% изо-амилового спирта) или гликолей разной мол. массы. Эти жидкости должны иметь вязкость не менее 1,5 мм 2 /с при 100 °С и не более 1800 мм 2 /с при – 40 °С.

Во все Т. ж. вводят, как правило, антикоррозионные присадки, в амортизационные, гидравлич. и тормозные, кроме того,-вязкостные, противоизносные и антиокислительные, а в охлаждающие-антипенные присадки. См. также Сма-зочно-охлаждающие жидкости.

Лит.: Топлива, смазочные материалы, технические жидкости. Ассортимент и применение. Справочное издание, под ред. В. М. Школьникова, М., 1989.

А. В. Виленкин.

Химическая энциклопедия. — М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

  • ТЕХНИКА БЕЗОПАСНОСТИ
  • ТЕХНИЧЕСКИЙ УГЛЕРОД

Смотреть что такое “ТЕХНИЧЕСКИЕ ЖИДКОСТИ” в других словарях:

ТЕХНИЧЕСКИЕ ЖИДКОСТИ — мало и средневязкие нефт. и синтетич. жидкости, способствующие выполнению механизмом рабочих функций. По назначению подразделяются на амортизаторные [смесь нефт. дистиллятных масел кинематич. вязкостью (10 15)*10 6м2/с (при 50 оС)… … Большой энциклопедический политехнический словарь

Жидкости и средства для снятия лака — и его разбавления представляют собой изделия, изготовленные на основе смеси органических растворителей, которые могут также содержать жировые компоненты, масла, витамины, биологически активные вещества, красители, отдушки и другие добавки,… … Официальная терминология

Технические спецификации на виды работ при строительстве, реконструкции и ремонте автомобильных дорог и искусственных сооружений на них — Терминология Технические спецификации на виды работ при строительстве, реконструкции и ремонте автомобильных дорог и искусственных сооружений на них: 3. Автогудронатор. Используется при укреплении асфальтобетонного гранулята битумной эмульсией.… … Словарь-справочник терминов нормативно-технической документации

ТЕХНИЧЕСКИЕ СРЕДСТВА ОБУЧЕНИЯ — (ТСО), средства обучения, состоящие из экранно звуковых носителей уч. информации и аппаратуры, с помощью к рой проявляется эта информация. Экранно звуковые средства (ЭЗС). подразделяют на звуковые (ауди тивные) грамзаписи, магнитные записи уч.… … Российская педагогическая энциклопедия

Технические условия. Смеси резиноасфальтобетонные и резиноасфальтобетоны на основе вяжущих БИТРЭК — Терминология Технические условия. Смеси резиноасфальтобетонные и резиноасфальтобетоны на основе вяжущих БИТРЭК: 9.12. Вторая ступень очистки газов. Принцип действия мокрых пылеуловителей основан на захвате частиц пыли водой или их смахивании и… … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 54805-2011: Насосы центробежные. Технические требования. Класс II — Терминология ГОСТ Р 54805 2011: Насосы центробежные. Технические требования. Класс II оригинал документа: базовое расчетное давление (basic design pressure): Давление, подвергающее примененный материал находящихся под давлением деталей… … Словарь-справочник терминов нормативно-технической документации

Расход жидкости — 5. Расход жидкости Количество жидкости, протекающей через турбинный преобразователь за единицу времени Источник … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 54806-2011: Насосы центробежные. Технические требования. Класс 1 — Терминология ГОСТ Р 54806 2011: Насосы центробежные. Технические требования. Класс 1 оригинал документа: 3.6 базовое расчетное давление (basic design pressure): Давление, подвергающее примененный материал находящихся под давлением деталей… … Словарь-справочник терминов нормативно-технической документации

Читайте также:
Резина материал - классификация, эксплуатационные характеристики

ГОСТ Р 52932-2008: Счетчики электромагнитные, ультразвуковые, вихревые и струйные для водяных систем теплоснабжения. Общие технические условия — Терминология ГОСТ Р 52932 2008: Счетчики электромагнитные, ультразвуковые, вихревые и струйные для водяных систем теплоснабжения. Общие технические условия оригинал документа: 3.11 водяная система теплоснабжения: Система теплоснабжения, в которой … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 52453-2005: Автомобильные транспортные средства. Механизмы рулевые с гидравлическим усилителем и рулевые гидроусилители. Технические требования и методы испытаний — Терминология ГОСТ Р 52453 2005: Автомобильные транспортные средства. Механизмы рулевые с гидравлическим усилителем и рулевые гидроусилители. Технические требования и методы испытаний оригинал документа: 3.6 внутренние утечки: Утечки через… … Словарь-справочник терминов нормативно-технической документации

Савватеев Иван Валерьевич

Технические жидкости

ТЕХНИЧЕСКИЕ ЖИДКОСТИ

Наряду с топливом, маслом и смазками в современных автомобилях широко используются технические жидкости (для охлаждения двигателей, обеспечения торможения и амортизации автомобилей во время движения, приведения в действие механизмов, силовых агрегатов и т.п.).

Технические жидкости должны отвечать многообразным и специфичным требованиям, поэтому для их приготовления исполь­зуются многочисленные химические и синтетические соединения: гликоли, углеводороды, спирты, глицерин, эфиры и др.

В зависимости от назначения и свойств технические жидкости подразделяются на охлаждающие, тормозные, для гидравлических систем, амортизаторные и пусковые. Производятся также промы­вочные и очистительные жидкости — это этиловый спирт, очис­тители стекол, различные моющие средства и др.

Охлаждающие жидкости

Детали двигателей внутреннего сгорания, например поршни, гильзы цилиндров, головка блока, непосредственно соприкасаются с продуктами сгорания топлива и сильно нагреваются, т. е. для обеспечения нормальной работы двигатель необходимо охлаждать.

Эффективность и надежность работы системы охлаждения двигателя в значительной степени зависят от качества применяемой охлаждающей жидкости.

Все охлаждающие жидкости должны удовлетворять следующим требованиям:

эффективно отводить тепло (т. е. иметь большую теплоемкость и небольшую вязкость);

иметь высокие температуру кипения и теплоту испарения;

обладать низкой температурой кристаллизации;

не образовывать отложений в системе охлаждения;

не вызывать коррозии металлических деталей и не разрушать резиновые детали системы охлаждения;

не вспениваться в процессе работы;

быть дешевыми, пожаробезопасными и безвредными для здоровья.

Использование воды в качестве охлаждающей жидкости

Наиболее распространенной жидкостью, применяемой для , охлаждения, является вода. Она имеет самую высокую теплоем­кость 4,19 кДж/(кг°С), большую теплопроводность, небольшую кинематическую вязкость (v20 о С = 1 мм 2 /с) и большую теплоту ис­парения.

Однако вода обладает и существенными недостатками, затрудняющими ее применение в качестве охлаждающей жидкости. При 0 о С она замерзает, увеличиваясь в объеме примерно на 10 % и вызывая разрушение системы охлаждения при дальнейшем понижении температуры окружающего воздуха.

При использовании воды в качестве охлаждающей жидкости образование отложений в системе охлаждения двигателя опреде­ляется в основном наличием растворенных в воде солей, образующих накипь, теплопроводность которой приблизительно в 100 раз меньше, чем теплопроводность стали. Отложение накипи в системе охлаждения (рис. 8.1) вызывает нарушение теплового режима работы двигателя, увеличение расхода топлива и масла.

О количестве растворенных в воде солей можно судить по ее жесткости, единицей измерения которой является миллиграмм-эквивалент (мг-экв.). Мягкая вода содержит до 3 мг-экв. солей в 1 л, вода средней жесткости — от 3 до 6 мг-экв., а жесткая — более 6 мг-экв.

Целесообразно применять для охлаждения двигателя мягкую воду, не образующую накипь. При использовании для этих целей воды средней жесткости возникает необходимость не реже двух раз в год очищать систему охлаждения от образовавшейся накипи.

Рис. 8.1. Типичные места отложения накипи (/) и шлама (2) в системе охлаждения автомобильных двигателей

Применять жесткую воду следует после предварительного ее умягчения (кипячения, обработки известью и содой) или с добавлением противонакипных присадок (антинакипинов). Например, калиевый хромпик К2Сг2О7 при концентрации его от 5 до 10 г в 1 л воды способен превращать содержащиеся в ней соли в вещества, не образующие накипи.

Применению любого антинакипина должна предшествовать очистка системы охлаждения от образовавшейся ранее накипи.

На рис. 8.2 приведена схема установки для умягчения жесткой воды.

Рис. 8.2. Схема стационарной катионитовой установки для умягчения жесткой воды:

1— насос; 2 — катионитовый фильтр с сульфированным углем; 3 — мешалка для приготовления раствора поваренной соли; 4 — сборник умягченной воды

На рис. 8.2 приведена схема установки для умягчения жесткой воды.

Низкозамерзающие охлаждающие жидкости

В зимний период эксплуатации в системах охлаждения приме­няют низкозамерзающие охлаждающие жидкости — антифризы, являющиеся смесью этиленгликоля с водой.

Этиленгликоль (двухатомный спирт СН2ОН —СН2ОН, или С2Н4(ОН)2) представляет собой маслянистую желтоватую жидкость без запаха с температурой кипения 197 °С и температурой кристаллизации — 11,5 °С. Минимальное значение температуры замерзания смеси этиленгликоля с водой (—75 °С) получают при концентрации этиленгликоля 66,7 % (рис. 8.3).

Рис. 8.3.а Зависимость плотности р при 20°С антифризов от содержания в них воды

Рис. 8.3. Зависимость температуры замерзания t 3 антифризов от содержания в них воды

Этиленгликоль и его водные растворы при нагревании сильно расширяются. Чтобы предотвратить выброс смеси, ее не доливают в систему охлаждения на 6. 8 % от общего объема. Этиленгликолевые антифризы имеют повышенную коррозионность по отно­шению к металлам и разрушают резину.

В состав антифризов вводят противокоррозионные присадки: декстрин —углевод типа крахмала (1 г на литр), предохраняющий от разрушения свинцово-оловянистый припой, алюминий и медь, и динатрий фосфат (2,5. 3,5 г на литр), защищающий черные металлы, медь и латунь.

Иногда в простые антифризы вводят молибденовый натрий в количестве 7,5. 8,0 г на литр, предотвращающий коррозию цинковых и хромовых покрытий на деталях системы охлаждения. При этом в обозначении антифриза добавляют букву М.

Читайте также:
Дефекты в кристаллах - все виды с подробным описанием

Отечественная промышленность выпускает простые и дешевые антифризы марок 40 и 65 (ГОСТ 159—52). Антифриз марки 40, представляющий собой смесь 53 % этиленгликоля и 47% воды, имеет температуру замерзания не выше —40 “С, а антифриз марки 65, содержащий 66 % этиленгликоля и 34 % воды, — не выше -65 °С.

Впервые для автомобилей ВАЗ в нашей стране был выпущен антифриз «Тосол», содержащий противокоррозионные, антивспенивающую и антифрикционные присадки. «Тосол» производится трех марок: АМ, А-40 и А-65М (табл. 8.1).

С 1988 г. выпускается антифриз «Лена» трех марок: ОЖ-К, ОЖ-40 и ОЖ-65.

Поскольку антифризы различаются по рецептуре, смешивать разные марки между собой не следует.

При использовании антифризов надо иметь в виду, что в системе охлаждения в первую очередь испаряется вода, которую необходимо периодически доливать в радиатор.

Необходимо также следить за тем, чтобы в этиленгликолевые жидкости не попадали бензин и другие нефтепродукты, так как это вызывает вспенивание и выброс жидкости через пробку радиатора.

Срок службы охлаждающих жидкостей ограничивается. Опытным путем установлено, что «Тосол» надежно работает два года, а при интенсивной эксплуатации — в течение 60 тыс. км пробега.

Этиленгликоль — сильный пищевой яд, поэтому после контакта с ним необходимо тщательно мыть руки с мылом.

Жидкости для гидравлических систем

Жидкости для гидравлических систем применяются в гидравлических приводах и амортизаторах автомобилей, а также в подъемных устройствах автомобилей-самосвалов.

В гидроприводах автомобилей температура жидкости обычно изменяется от — 40 °С зимой до 80. 100 °С летом, а при эксплуата­ции автомобилей в арктических условиях она нередко опускается до —60 °С. При этом рабочее давление в гидроприводах автомобилей обычно не превышает 10 МПа.

Для обеспечения надежной работы жидкости для гидросистем должны удовлетворять следующим требованиям:

иметь определенный уровень вязкости, низкую температуру застывания и незначительную сжимаемость;

не разрушать металлические и резиновые уплотнительные детали гидросистемы;

обладать высокой физической и химической стабильностью; иметь хорошие противоизносные свойства.

Тормозные жидкости

Для гидротормозной системы автомобиля (рис. 8.4) производят тормозные жидкости на кастровой и гликолевой основе.

Жидкости на касторовой основе имеют хорошие смазывающие свойства и не вызывают набухания или разъедания резиновых деталей тормозной системы автомобилей.

В 40-х годах XX века в России была впервые выпущена и до сих пор широко применяется тормозная жидкость БСК, представляющая собой смесь 50 % бутилового спирта и 50 % касторового масла и обладающая хорошими смазывающими свойствами. Недостатком этой жидкости является то, что при —20 °С касторовое масло выпадает в осадок, что может привести к поломке тормозной системы.

Выпускаемые ранее тормозная жидкость АСК и спиртокасторовая жидкость ЭСК (40 % этилового спирта и 60 % касторового масла), имеющие ряд недостатков, не нашли широкого применения.

Специально для автомобилей ВАЗ была выпущена тормозная жидкость «Нева» на гликолевой основе с вязкостной и антикоррозионной присадками, работоспособная в широком диапазоне температур от —50 до +50 “С. Чуть позже была выпущена тормозная жидкость «Томь», превосходящая «Неву» по низкотемпературным свойствам.

Мировым стандартам ( dot -3; dot -4) соответствует выпускаемая в России тормозная жидкость «Роса».

Жидкости на гликолевой основе огнеопасны и токсичны.

Характеристики отечественых тормозных жидкостей приведены в табл. 8.2.

Рис. 8.4. Схема гидравлического привода тормозной системы автомобиля:

1 — главный цилиндр; 2 — поршень главного цилиндра; 3 — резервуар с жидкостью; 4 — трубопровод; 5 — рабочий цилиндр; 6 — поршни рабочего цилиндра

Таблица 8.2 Характеристики основных марок отечественых тормозных жидкостей

«Нева» (ТУ 6-01-1163-82)

«Томь» (ТУ 6-01-1276-82)

«Роса» (ТУ 6-05-221-569-84)

Прозрач­ная одно­родная жидкость красного цвета без осадка и механиче­ских при­месей

Прозрачная одно­родная жидкость от светло-желтого цвета без осадка. Марки

полностью совместимы между собой

Прозрачная однородная жидкость от светло-желтого до светло-коричневого цвета без осадка

Химическая энциклопедия
ТЕХНИЧЕСКИЕ ЖИДКОСТИ

ТЕХНИЧЕСКИЕ ЖИДКОСТИ

ТЕХНИЧЕСКИЕ ЖИДКОСТИ – маловязкие жидкости, предназначенные для обеспечения выполнения машинами и механизмами рабочих ф-ций. Общее для всех Т. ж.-отсутствие требований к смазывающим св-вам. По назначению Т. ж. подразделяют на амортизаторные, антиобледе-нительные, гидравлические (см. Гидравлические жидкости), охлаждающие, промывочные, пусковые, разделительные, смазочно-охлаждающие и тормозные.

Амортизаторные жидкости используют для заливки телескопических, рычажно-кулачковых и др. гидравлич. амортизаторов колесных и гусеничных транспортных машин с целью гашения мех. колебаний путем поглощения кинетич. энергии движущихся масс. Приготовляют из нефтяных дистиллятов селективной очистки смешением с крем-нийорг. жидкостями (8-10% по массе). Вязкость при 100 °С для колесных машин 3-4, для гусеничных машин 4-5 мм 2 /с. Разновидность амортизаторных жидкостей-применяемые в артиллерии противооткатные жидкости.

Антиобледенительные жидкости предназначены для предотвращения обледенения передних кромок крыльев и лопастей винтов, стекол пилотских кабин и иных элементов пов-сти самолетов и вертолетов, а также стекол автомобилей, тепловозов и т. п. Такие жидкости растворяют влагу и кристаллы льда на защищаемой пов-сти с образованием р-ра с низкой т-рой замерзания; кроме того, пленка жидкости ослабляет сцепление льда с пов-стью, что облегчает его удаление встречным потоком воздуха. Антиобледенит. жидкостями чаще всего служат водные р-ры спиртов (этилового, изопропилового, этиленгликоля и др.).

Охлаждающие жидкости применяют в системах охлаждения двигателей внутр. сгорания, радиоэлектронных системах и др. для поглощения и отвода 25-35% выделяющейся при работе теплоты и предупреждения перегрева деталей. В качестве охлаждающих жидкостей используют воду и антифризы.

Промывочные жидкости служат для очистки деталей и масляных систем и иных внутр. полостей механизмов от орг. загрязнений. При контакте с загрязненными пов-стями промывочные жидкости растворяют или размягчают лаковые и смолистые отложения. Как правило, эти жидкости состоят из смеси нефтяных дистиллятов (легких масел, керосина, газойля и т. п.) с р-рителями и моющими ср-вами (фенолы, кетоны, гликолевые эфиры, толуол, ксилол, тетра-лин, хлорсодержащие соед. и т. д.). Широко распространены также негорючие жидкости на водной основе.

Читайте также:
Защитные материалы: классификация, свойства, применение, изготовление

Пусковые жидкости, впрыскиваемые в топливную систему двигателей внутр. сгорания, предназначены для облегчения их пуска при низких т-рах. Характеризуются высокой испаряемостью и образуют в цилиндрах двигателей горючую смесь. Получают смешением диэтилового эфира с низкокипящими углеводородами (петролейным эфиром и др.), изопропилнитратом и небольшим кол-вом (до 10% по массе) смазочного масла. Пусковые жидкости обладают высоким давлением паров, низкой т-рой самовоспламенения и широкими пределами воспламеняемости.

Разделительные жидкости применяют в измерит. приборах (манометры, мановакуумметры, расходомеры и т. д.) с целью предотвращения контакта рабочих жидкостей с агрессивными средами (напр., H 2 SO 4 , HNO 3 , H 2 O 2 , C1 2 , Вr 2 ). Приготовляют на основе хлор- и хлорфторуглеродов, а также полисилоксанов; вязкость 7-27 мм 2 /с при 50 °С. Характеризуются высокой стабильностью против окисления.

Тормозные жидкости используют в гидравлич. тормозных системах транспортных машин. Выполняют ф-ции гидравлич. тела и смазочной среды при перемещении поршня в главном тормозном цилиндре. При работе привода тормозной системы давление в жидкостях достигает 10-12 МПа. Тормозные жидкости производят на основе касторового масла (смесь 60-40% масла и 40-60% изо-амилового спирта) или гликолей разной мол. массы. Эти жидкости должны иметь вязкость не менее 1,5 мм 2 /с при 100 °С и не более 1800 мм 2 /с при – 40 °С.

Во все Т. ж. вводят, как правило, антикоррозионные присадки, в амортизационные, гидравлич. и тормозные, кроме того,-вязкостные, противоизносные и антиокислительные, а в охлаждающие-антипенные присадки. См. также Сма-зочно-охлаждающие жидкости.

Лит.: Топлива, смазочные материалы, технические жидкости. Ассортимент и применение. Справочное издание, под ред. В. М. Школьникова, М., 1989.

Топливо, смазочные материалы и технические жидкости

Топливо

В автотракторных двигателях применяют жидкие и газообразные топлива, Топливо этих видов в зависимости от сырья, из которого его получают, может быть нефтяного и ненефтяного происхождения. Жидкие топлива (бензин и дизельное) получают из нефти путем ее прямой перегонки или крекинг-процессом.

Газообразные топлива как естественного происхождения, так и искусственные, полученные газификацией твердых топлив или другими способами, применяют в автотракторных двигателях в сжиженном и сжатом состоянии. К сжиженным газовым топливам относятся газы, способные при относительно низких давлениях (до 2 МПа) и нормальной температуре (20°С) переходить в жидкое состояние. Сжатые газы при нормальной температуре не переходят в жидкое состояние даже при высоком давлении (до 20 МПа), поэтому их используют в газообразном состоянии.

Расширенное применение газообразных топлив обусловлено их преимуществами:

  • меньшей стоимостью
  • способностью к лучшему смесеобразованию
  • полным сгоранием в цилиндрах
  • отсутствием разжижения моторного масла

Автомобильные бензины для карбюраторных двигателей должны удовлетворять следующим требованиям:

  • иметь высокие карбюрационные и антидетонационные свойства
  • давать минимальное количество нагара
  • не вызывать коррозии
  • обладать высокой стабильностью при хранении

Товарные сорта бензинов получают смешиванием дистиллятов бензина прямой перегонки и термического крекинга, к которым добавляют с целью повышения их антидетонационной стойкости моторный бензол, алкилбензол, бензин каталитического крекинга, технический изооктан и др. С точки зрения антидетонационной стойкости наиболее желательны в бензине ароматические углеводороды, однако при сгорании они образуют канцерогенные вещества, в частности, 3,4 бензпирен. Поэтому нормами Европейского Союза содержание ароматических углеводородов в бензине не должно превышать 10%.

Ранее по ГОСТ 208467 бензин выпускался следующих марок: А-76, АИ-93 и АИ-98. Для первой из указанных марок октановое число определялось моторным методом, а для двух последующих — исследовательским методом. Сейчас для неэтилированных бензинов в зависимости от октанового числа, определенного исследовательским методом, установлены следующие марки бензинов: «Нормаль-80», «Регуляр-92», «Премиум-95» и «Супер-98». Октановое число этих бензинов, определенное моторным методом, равно соответственно 76 — 83 — 85 — 88. Стандарт разрешает применение для этих бензинов марганцевых антидетонаторов.

Дизельные двигатели имеют меньший удельный эффективный расход топлива — 170…180 г/элсч по сравнению с карбюраторными — 220…250 г/элсч ввиду большей степени сжатия. В конце сжатия, когда давление составляет 30 — 35 атм и температура 500…550°С, за 15…25° до ВМТ начинается и через 6…10°после ВМТ заканчивается впрыск топлива, которое сгорает, обеспечивая работу двигателя.

Дизельное топливо должно удовлетворять следующим эксплуатационным требованиям:

  • обладать хорошими низкотемпературными свойствами, не содержать механических примесей и воды
  • обеспечивать хорошее смесеобразование и испарение, для чего иметь оптимальную вязкость и фракционный состав
  • обладать хорошей воспламеняемостью, т.е. обеспечивать легкий запуск, мягкую работу двигателя и полное бездымное сгорание, что зависит от вязкости, химического и фракционного составов
  • не вызывать нагаро- и лакообразования
  • не содержать коррозийных продуктов

Дизельные топлива получают смешением в основном трех дистиллятов прямой перегонки: керосинового, газойлевого и частично солярового, с добавлением элементов каталитического крекинга. В зависимости от требующегося сорта дизельного топлива изменяют пропорцию при смешении компонентов. Например, соляровый дистиллят вводится лишь в летнее дизельное топливо, а арктическое дизельное топливо почти целиком состоит из керосинового дистиллята.

Автотракторное дизельное топливо вырабатывается трех сортов:

  • Л (летнее), применяемое при температуре окружающего воздуха 273 К (0 оС) и выше
  • З (зимнее) — для эксплуатации при температуре 253 К (-20 °С) и выше
  • А (арктическое), используемое при температуре 223 К (-50 °С) и выше

Смазочные материалы для автомобилей

Для обеспечения надежного смазывания и длительной работы механизмов в масла вводят присадки, которые улучшают эксплуатационные качественные показатели масел. Присадки представляют собой металлоорганические и другие сложные химические соединения. Их классифицируют в зависимости от выполняемых ими функций в масле.

Моторные масла

Классификация моторных масел в соответствии с ГОСТ 17479-72 предусматривает выпуск их с вязкостью от 6 до 20 сСт при 100°С с интервалом через 2сСт. По эксплутационным свойствам масла делят на шесть групп (А, Б, В, Г, Д, Е), отличающиеся количеством и эффективностью введенных присадок. Поэтому в марке указывается значение кинематической вязкости при 100°С и буква, которая позволяет выбрать масло для двигателей различной степени теплонапряженности.

Читайте также:
Сталь: основные характеристики и свойства, классификация и марки

Масла группы А не содержат присадок и в настоящее время не выпускаются. В масла группы Б вводили до 5% присадок и использовали их в малофорсированных карбюраторных двигателях старых марок.

Масла группы В предназначены для работы в среднефорсированных двигателях и содержат до 8 % присадок, а масла группы Г для форсированных двигателях содержат до 14 % присадок.

Масла групп Б, В, Г делятся на 2 подгруппы:

  • 1 — для карбюраторных двигателей
  • 2 — для дизелей

Эти индексы указываются в марке. Для работы теплонапряженных двигателей с наддувом предназначены масла группы Д.

Масла группы Е предназначены для малооборотных стационарных дизелей и в сельском хозяйстве не применяются.

Буква М в маркировке масла указывает на то, что масло моторное. Например, масло М-4з/8В2, моторное, класс вязкости 4, имеет вязкость 8 сСт при 100°С, содержит загущающую присадку и предназначено для среднефор- сированных двигателей.

Зимой применяются масла с вязкостью 8 сСт, а летом — 10 сСт. Для среднефорсированных двигателей грузовых автомобилей применяются масла М-8В1 и М-10Вь Для высокофорсированных двигателей автомобилей применяются масла М-8Г1 и М-10Г1.

Масло М-8В2 и М-10В2 применяется для среднефорсированных двигателей тракторов устаревших марок. Для двигателей тракторов К-700, К-701, Т-150К и ДТ-175С применяются только масла группы Г — М-8Г2 и М-10Г2 .

Для автомобилей КАМАЗ предназначено масло М-8Г2к и М-10Г2к, имеющие улучшенные моюще-диспергирующие, вязкостно-температурные свойства и более низкую зольность по сравнению с другими маслами группы Г. Это масло рекомендуется к использованию также для тракторов К-700 и К-701.

Для обеспечения эксплуатации высокофорсированных дизелей с наддувом выпускается в ограниченном количестве масло М-10Дм, имеющее улучшенные моющие и антиокислительные свойства.

Масла МС-14, МС-20, и МК-22 используются в поршневых авиационных двигателях, а цифра в их маркировке указывает вязкость в сСт при 100°С. Эти масла могут использоваться в высокофорсированных тракторных двигателях.

Принято следующее обозначение масел для двигателей различного назначения. Оно состоит из групп знаков:

  • первая буква М (моторное)
  • вторая — цифры, характеризующие класс кинематической вязкости
  • третья — прописные буквы (А, Б, В, Г, Д, Е), означающие принадлежность к группе масел по эксплуатационным свойствам

Масла различных групп различаются эффективностью и содержанием присадок.

В марках масел, предназначенных для карбюраторных двигателей, указывают индекс 1, а для дизелей — индекс 2. Универсальные моторные масла, предназначенные для использования как в дизелях, так и в карбюраторных двигателях одного уровня форсирования (обозначаемые одинаковыми буквами), индекса в обозначении не имеют. Масла, принадлежащие к разным группам, имеют двойное обозначение, в котором первая буква характеризует качество масла при применении в дизелях, а вторая — в карбюраторных двигателях.

Примеры обозначения:
М — 8 — Вь где М — моторное масло; 8 — вязкость при 100 оС, мм2/с; В1 — для среднефорсированных карбюраторных двигателей;
М — 61/10 — Гь где 6 — класс вязкости, для которого вязкость при 255 К (-18 оС) находится до 10400 мм2/с; з (в индексе) — наличие загущающей (вязкостной) присадки, вследствие чего масло может быть использовано в качестве как зимнего, так и всесезонного; 10 — вязкость при 373 К (100 °С); T -для высокофорсированных карбюраторных двигателей.

Трансмиссионные масла

Трансмиссионные масла используют для смазывания агрегатов и механизмов трансмиссий тракторов, автомобилей и других машин.

Трансмиссионные масла по вязкости делят на четыре класса (9, 12, 18 и 34), а по эксплуатационным свойствам — на пять групп (1…5) и маркируют следующим образом:

  • ТМ — трансмиссионное масло
  • первая цифра — группа масла
  • вторая — класс кинематической вязкости

Пример обозначения: ТМ-5-123(рк), где ТМ — трансмиссионное масло; 5 — наличие противозадирной высокоэффективной присадки многофункционального действия; 12 — класс вязкости (1100… 1399 мм2/с); з — наличие загущающей присадки; рк — обладает рабочеконсервационными свойствами.

Пластичные смазки представляют собой мазеобразные продукты, состоящие из минерального или синтетического масла (основы), загустителя, наполнителя, стабилизатора и присадок.

Технические жидкости

В качестве охлаждающих жидкостей в автотракторных двигателях применяют воду и низкозамерзающие жидкости (антифризы).

Антифризы представляют собой смесь этиленгликоля (двухатомного спирта) с водой и антикоррозионной присадкой. Промышленность выпускает антифризы марок 40 и 65. Эти антифризы предназначены для эксплуатации двигателей в холодное время года при температуре до 233…208 К (- 40…- 65 оС).

Низкозамерзающая жидкость «Тосол» предназначена для использования всесезонно в двигателях легковых (ВАЗ, ГАЗ и др.) и грузовых (ЗИЛ-4331, КамАЗ) автомобилей, тракторов К-701. Выпускают три марки этой жидкости: АМ, А-40 и А-65. «Тосол» марки АМ представляет собой концентрат, при разбавлении которого на 50 % дистиллированной водой получают антифриз с температурой застывания 238 К (- 35 °С). При соответствующем разбавлении «Тосола» марки АМ дистиллированной водой получают марку А-40 с температурой замерзания 233 К (- 40 °С) или А-65 с температурой замерзания 208 К (- 65 °С).

Тормозные жидкости предназначены для использования в гидравлическом приводе тормозов и сцеплений легковых и грузовых автомобилей. Выпускают несколько марок тормозных жидкостей, например: БСК, ГТЖ-22М, ГТЖА-2 («Нева»), «Томь» и «Роса».

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: