Обратные тригонометрические функции их свойства и графики

Обратные тригонометрические функции, их графики и формулы

Определение обратных тригонометрических функций

Поскольку тригонометрические функции периодичны, то обратные к ним функции не однозначны. Так, уравнение y = sin x , при заданном , имеет бесконечно много корней. Действительно, в силу периодичности синуса, если x такой корень, то и x + 2πn (где n целое) тоже будет корнем уравнения. Таким образом, обратные тригонометрические функции многозначны. Чтобы с ними было проще работать, вводят понятие их главных значений. Рассмотрим, например, синус: y = sin x . Если ограничить аргумент x интервалом , то на нем функция y = sin x монотонно возрастает. Поэтому она имеет однозначную обратную функцию, которую называют арксинусом: x = arcsin y .

Если особо не оговорено, то под обратными тригонометрическими функциями имеют в виду их главные значения, которые определяются следующими определениями.

Арксинус ( y = arcsin x ) – это функция, обратная к синусу ( x = sin y ), имеющая область определения и множество значений .
Арккосинус ( y = arccos x ) – это функция, обратная к косинусу ( x = cos y ), имеющая область определения и множество значений .
Арктангенс ( y = arctg x ) – это функция, обратная к тангенсу ( x = tg y ), имеющая область определения и множество значений .
Арккотангенс ( y = arcctg x ) – это функция, обратная к котангенсу ( x = ctg y ), имеющая область определения и множество значений .

Графики обратных тригонометрических функций

Графики обратных тригонометрических функций получаются из графиков тригонометрических функций зеркальным отражением относительно прямой y = x . См. разделы Синус, косинус, Тангенс, котангенс.


y = arcsin x
y = arccos x
y = arctg x
y = arcctg x

Основные формулы

Здесь следует особо обратить внимание на интервалы, для которых справедливы формулы.

arcsin(sin x ) = x при
sin(arcsin x ) = x
arccos(cos x ) = x при
cos(arccos x ) = x

arctg(tg x ) = x при
tg(arctg x ) = x
arcctg(ctg x ) = x при
ctg(arcctg x ) = x

Формулы, связывающие обратные тригонометрические функции

Формулы суммы и разности

при или

при 0,,y > 0 ;” style=”width:114px;height:18px;vertical-align:-10px;background-position:-0px -434px”> и 1″ style=”width:102px;height:22px;vertical-align:-10px;background-position:-0px -336px”>

при и 1″ style=”width:102px;height:22px;vertical-align:-10px;background-position:-0px -336px”>

при или

при 0,,y и 1″ style=”width:102px;height:22px;vertical-align:-10px;background-position:-0px -336px”>

при 0 ;” style=”width:108px;height:18px;vertical-align:-10px;background-position:-114px -434px”> и 1″ style=”width:102px;height:22px;vertical-align:-10px;background-position:-0px -336px”>

при

при 0,;xy > 1″ style=”width:122px;height:18px;vertical-align:-10px;background-position:-137px -416px”>

при 1″ style=”width:122px;height:18px;vertical-align:-10px;background-position:-259px -416px”>

при -1″ style=”width:76px;height:18px;vertical-align:-10px;background-position:-497px -434px”>

при 0,;xy

при

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Автор: Олег Одинцов . Опубликовано: 04-07-2014

Читайте также:
Квадратичная функция - определение, уравнения, графики

Обратные тригонометрические функции

ОПРЕДЕЛЕНИЕ 1 . Пусть число a удовлетворяет неравенству . Число x называют арксинусом числа a и обозначают x = arcsin a, если выполнены два условия:

ОПРЕДЕЛЕНИЕ 2 . Пусть число a удовлетворяет неравенству . Число x называют арккосинусом числа a и обозначают x = arccos a, если выполнены два условия:

ОПРЕДЕЛЕНИЕ 3 . Рассмотрим произвольное число a . Число x называют арктангенсом числа a и обозначают x = arctg a, если выполнены два условия:

ОПРЕДЕЛЕНИЕ 4 . Рассмотрим произвольное число a . Число x называют арккотангенсом числа a и обозначают x = arcctg a, если выполнены два условия:

Арксинус, арккосинус, арктангенс и арккотангенс удовлетворяют, в частности, следующим соотношениям:

arcsin (– a) = – arcsin a ,
arccos (– a) =
= π – arccos a ,
arctg (– a) = – arctg a ,
arcctg (– a) =
= π – arcctg a .

Обратными тригонометрическими функциями называют функции:

Графики этих функций изображены на рисунках 1, 2, 3, 4.

ТАБЛИЦА ЗНАЧЕНИЙ ФУНКЦИИ y = arcsin x

x – 1 1
y = arcsin x
x y = arcsin x
– 1
1

ТАБЛИЦА ЗНАЧЕНИЙ ФУНКЦИИ y = arccos x

x – 1 1
y = arccos x π
x y = arccos x
– 1 π
1

ТАБЛИЦА ЗНАЧЕНИЙ ФУНКЦИИ y = arctg x

x – 1 1
y = arctg x
x y = arctg x
– 1
1

ТАБЛИЦА ЗНАЧЕНИЙ ФУНКЦИИ y = arcctg x

x – 1 1
y = arcctg x
x y = arcctg x
– 1
1

ПРИМЕР . Решить уравнение

2 arcsin 2x = arccos 7x .

РЕШЕНИЕ . Возьмём косинус от обеих частей уравнения. Тогда в левой части уравнения получим:

cos ( 2 arcsin 2x ) = 1 – 2sin 2 ( arcsin 2x ) = 1 – 2 ( 2x ) 2 = 1 – 8x 2 .

cos ( 2 arcsin 2x ) =
= 1 – 2sin 2 ( arcsin 2x ) =
= 1 – 2 ( 2x ) 2 = 1 – 8x 2 .

В правой части уравнения получим:

В силу того, что область определения обратных тригонометрических функций y = arcsin x и y = arccos x имеет вид: , второй корень должен быть отброшен.

ОТВЕТ :

Алгебра и начала математического анализа. 11 класс

Конспект урока

Алгебра и начала математического анализа, 11 класс

Урок №6. Обратные тригонометрические функции.

Перечень вопросов, рассматриваемых в теме

  • Рассмотреть свойства арксинуса и арккосинуса;
  • Рассмотреть свойства арктангенса и арккотангенса;
  • Объяснять расположение промежутков монотонности;
  • Определять наибольшее и наименьшее значение функции;
  • Применять знания при решении задач.

Глоссарий по теме

Арксинус ( y = arcsin x ) – это функция, обратная к синусу ( x = sin y ). Он имеет область определения и множество значений .

Арккосинус ( y = arccos x ) – это функция, обратная к косинусу ( x = cos y ). Он имеет область определения и множество значений

Арктангенс ( y = arctg x ) – это функция, обратная к тангенсу ( x = tg y ). Он имеет область определения и множество значений .

Читайте также:
Четырехугольник является параллелограммом - доказательство

Арккотангенс ( y = arcctg x ) – это функция, обратная к котангенсу ( x = ctg y ). Он имеет область определения и множество значений

Основная литература:

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2010.–336 с.

Дополнительная литература:

Шахмейстер, А.Х. Тригонометрия / А.Х. Шахмейстер.— СПб.: Петроглиф, 2014. — 750 с.

Открытые электронные ресурсы:

Открытый банк заданий ЕГЭ ФИПИ [Электронный ресурс].– Режим доступа: http://ege.fipi.ru/

Решу ЕГЭ образовательный портал для подготовки к экзаменам [Электронный ресурс].– Режим доступа: https://ege.sdamgia.ru/

Теоретический материал для самостоятельного изучения

Обратные тригонометрические функции решают задачу вычисления углов по известному значению тригонометрической функции. Например, косинус какого угла равен ? Первое, что хочется ответить, что это угол 60° или , но вспомнив о периоде косинуса, понимаем, что углов, при которых косинус равен , бесконечное множество. И такое множество значений углов, соответствующих данному значению тригонометрической функции, будет наблюдаться и для синусов, тангенсов и котангенсов, т.к. все они обладают периодичностью. Для внесения точности для каждой из обратных тригонометрических функций диапазон углов, которые она возвращает, выбран свой, и мы их рассмотрим отдельно.

Объяснение нового материала

Рассмотрим свойства функции y=arcsin x и построим ее график.

Арксинус ( y = arcsin x ) – это функция, обратная к синусу ( x = sin y ).

Обратные тригонометрические функции, их свойства и графики.

Обратные тригонометрические функции (арксинус, арккосинус, арктангенс и арккотангенс) являются основным элементарным функциями. Часто из-за приставки “арк” обратные тригонометрические функции называют аркфункциями. Сейчас мы рассмотрим их графики и перечислим свойства.

Функция арксинус y = arcsin(x).

Изобразим график функции арксинус:

Свойства функции арксинус y = arcsin(x).

· Областью определения функции арксинус является интервал от минус единицы до единицы включительно: .

· Область значений функции y = arcsin(x): .

· Функция арксинус – нечетная, так как .

· Функция y = arcsin(x) возрастает на всей области определения, то есть, при .

· Функция вогнутая при , выпуклая при .

· Точка перегиба (0; 0), она же ноль функции.

Функция арккосинус y = arccos(x).

График функции арккосинус имеет вид:

Читайте также:
Уравнение биссектрисы треугольника по координатам вершин - формула

Свойства функции арккосинус y = arccos(x).

· Область определения функции арккосинус: .

· Область значений функции y = arccos(x): .

· Функция не является ни четной ни нечетной, то есть, она общего вида.

· Функция арккосинус убывает на всей области определения, то есть, при .

· Функция вогнутая при , выпуклая при .

· Точка перегиба .

Функция арктангенс y = arctg(x).

График функции арктангенс имеет вид:

Свойства функции арктангенс y = arctg(x).

· Область определения функции y = arctg(x): .

· Область значений функции арктангенс: .

· Функция арктангенс – нечетная, так как .

· Функция возрастает на всей области определения, то есть, при .

· Функция арктангенс вогнутая при , выпуклая при .

· Точка перегиба (0; 0), она же ноль функции.

· Горизонтальными асимптотами являются прямые при и при . На чертеже они показаны зеленым цветом.

Функция арккотангенс y = arcctg(x).

Изобразим график функции арккотангенс:

Свойства функции арккотангенс y = arcctg(x).

· Областью определения функции арккотангенс является все множество действительных чисел: .

· Область значений функции y = arcctg(x): .

· Функция арккотангенс не является ни четной ни нечетной, то есть, она общего вида.

· Функция убывает на всей области определения, то есть, при .

· Функция вогнутая при , выпуклая при .

· Точка перегиба .

· Горизонтальными асимптотами являются прямые при (на чертеже показана зеленым цветом) и y = 0 при .

Обратные тригонометрические функции и их графики

Обратные тригонометрические функции — это арксинус, арккосинус, арктангенс и арккотангенс.

Сначала дадим определения.

Арксинусом числа а называется число , такое, что Или, можно сказать, что это такой угол , принадлежащий отрезку , синус которого равен числу а.

Арккосинусом числа а называется число , такое, что

Арктангенсом числа а называется число , такое, что

Арккотангенсом числа а называется число , такое, что

Расскажем подробно об этих четырех новых для нас функциях — обратных тригонометрических.

Например, арифметический квадратный корень из числа а — такое неотрицательное число, квадрат которого равен а.

Логарифм числа b по основанию a — такое число с, что

Мы понимаем, для чего математикам пришлось «придумывать» новые функции. Например, решения уравнения — это и Мы не смогли бы записать их без специального символа арифметического квадратного корня.

Читайте также:
Средняя линия трапеции - определение, формулы и решение задач

Понятие логарифма оказалось необходимо, чтобы записать решения, например, такого уравнения: Решение этого уравнения — иррациональное число Это показатель степени, в которую надо возвести 2, чтобы получить 7.

Так же и с тригонометрическими уравнениями. Например, мы хотим решить уравнение

Ясно, что его решения соответствуют точкам на тригонометрическом круге, ордината которых равна И ясно, что это не табличное значение синуса. Как же записать решения?

Здесь не обойтись без новой функции, обозначающей угол, синус которого равен данному числу a. Да, все уже догадались. Это арксинус.

Угол, принадлежащий отрезку , синус которого равен — это арксинус одной четвертой. И значит, серия решений нашего уравнения, соответствующая правой точке на тригонометрическом круге, — это

А вторая серия решений нашего уравнения — это

Подробнее о решении тригонометрических уравнений — здесь.

Осталось выяснить — зачем в определении арксинуса указывается, что это угол, принадлежащий отрезку ?

Дело в том, что углов, синус которых равен, например, , бесконечно много. Нам нужно выбрать какой-то один из них. Мы выбираем тот, который лежит на отрезке .

Взгляните на тригонометрический круг. Вы увидите, что на отрезке каждому углу соответствует определенное значение синуса, причем только одно. И наоборот, любому значению синуса из отрезка отвечает одно-единственное значение угла на отрезке . Это значит, что на отрезке можно задать функцию принимающую значения от до

Повторим определение еще раз:

Арксинусом числа a называется число , такое, что

Обозначение: Область определения арксинуса — отрезок Область значений — отрезок .

Можно запомнить фразу «арксинусы живут справа». Не забываем только, что не просто справа, но ещё и на отрезке .

Мы готовы построить график функции

Как обычно, отмечаем значения х по горизонтальной оси, а значения у — по вертикальной.

Поскольку , следовательно, х лежит в пределах от -1 до 1.

Значит, областью определения функции y = arcsin x является отрезок

Мы сказали, что у принадлежит отрезку . Это значит, что областью значений функции y = arcsin x является отрезок .

Заметим, что график функции y=arcsinx весь помещается в области, ограниченной линиями и

Читайте также:
Обыкновенные дроби - основное свойство, примеры, действия

Как всегда при построении графика незнакомой функции, начнем с таблицы.

По определению, арксинус нуля — это такое число из отрезка , синус которого равен нулю. Что это за число? — Понятно, что это ноль.

Аналогично, арксинус единицы — это такое число из отрезка , синус которого равен единице. Очевидно, это

Продолжаем: — это такое число из отрезка , синус которого равен . Да, это

Строим график функции

1. Область определения

2. Область значений

3. , то есть эта функция является нечетной. Ее график симметричен относительно начала координат.

4. Функция монотонно возрастает. Ее наименьшее значение, равное – , достигается при , а наибольшее значение, равное , при

5. Что общего у графиков функций и ? Не кажется ли вам, что они «сделаны по одному шаблону» — так же, как правая ветвь функции и график функции , или как графики показательной и логарифмической функций?

Представьте себе, что мы из обычной синусоиды вырезали небольшой фрагмент от до , а затем развернули его вертикально — и мы получим график арксинуса.

То, что для функции на этом промежутке — значения аргумента, то для арксинуса будут значения функции. Так и должно быть! Ведь синус и арксинус — взаимно-обратные функции. Другие примеры пар взаимно обратных функций — это при и , а также показательная и логарифмическая функции.

Напомним, что графики взаимно обратных функций симметричны относительно прямой

Аналогично, определим функцию Только отрезок нам нужен такой, на котором каждому значению угла соответствует свое значение косинуса, а зная косинус, можно однозначно найти угол. Нам подойдет отрезок

Арккосинусом числа a называется число , такое, что

Легко запомнить: «арккосинусы живут сверху», и не просто сверху, а на отрезке

Обозначение: Область определения арккосинуса — отрезок Область значений — отрезок

Очевидно, отрезок выбран потому, что на нём каждое значение косинуса принимается только один раз. Иными словами, каждому значению косинуса, от -1 до 1, соответствует одно-единственное значение угла из промежутка

Арккосинус не является ни чётной, ни нечётной функцией. Зато мы можем использовать следующее очевидное соотношение:

Читайте также:
Внутренние односторонние углы - определение, свойство, правило

Построим график функции

Нам нужен такой участок функции , на котором она монотонна, то есть принимает каждое свое значение ровно один раз.

Выберем отрезок . На этом отрезке функция монотонно убывает, то есть соответствие между множествами и взаимно однозначно. Каждому значению х соответствует свое значение у. На этом отрезке существует функция, обратная к косинусу, то есть функция у = arccosx.

Заполним таблицу, пользуясь определением арккосинуса.

Арккосинусом числа х, принадлежащего промежутку , будет такое число y, принадлежащее промежутку , что

Вот график арккосинуса:

1. Область определения

2. Область значений

Эта функция общего вида — она не является ни четной, ни нечетной.

4. Функция является строго убывающей. Наибольшее значение, равное , функция у = arccosx принимает при , а наименьшее значение, равное нулю, принимает при

5. Функции и являются взаимно обратными.

Следующие — арктангенс и арккотангенс.

Арктангенсом числа a называется число , такое, что

Обозначение: . Область определения арктангенса — промежуток Область значений — интервал .

Почему в определении арктангенса исключены концы промежутка — точки ? Конечно, потому, что тангенс в этих точках не определён. Не существует числа a, равного тангенсу какого-либо из этих углов.

Построим график арктангенса. Согласно определению, арктангенсом числа х называется число у, принадлежащее интервалу , такое, что

Как строить график – уже понятно. Поскольку арктангенс — функция обратная тангенсу, мы поступаем следующим образом:

– Выбираем такой участок графика функции , где соответствие между х и у взаимно однозначное. Это интервал Ц На этом участке функция принимает значения от до

Тогда у обратной функции, то есть у функции , область, определения будет вся числовая прямая, от до а областью значений — интервал

Дальше рассуждаем так же, как при построении графиков арксинуса и арккосинуса.

А что же будет при бесконечно больших значениях х? Другими словами, как ведет себя эта функция, если х стремится к плюс бесконечности?

Мы можем задать себе вопрос: для какого числа из интервала значение тангенса стремится к бесконечности? — Очевидно, это

А значит, при бесконечно больших значениях х график арктангенса приближается к горизонтальной асимптоте

Читайте также:
Модуль числа - как решать уравнения, свойства, знак, график в алгебре

Аналогично, если х стремится к минус бесконечности, график арктангенса приближается к горизонтальной асимптоте

На рисунке — график функции

1. Область определения

2. Область значений

3. Функция нечетная.

4. Функция является строго возрастающей.

5. Прямые и — горизонтальные асимптоты данной функции.

6. Функции и являются взаимно обратными — конечно, когда функция рассматривается на промежутке

Аналогично, определим функцию арккотангенс и построим ее график.

Арккотангенсом числа a называется число , такое, что

1. Область определения

2. Область значений

3. Функция – общего вида, то есть ни четная, ни нечетная.

4. Функция является строго убывающей.

5. Прямые и — горизонтальные асимптоты данной функции.

6. Функции и являются взаимно обратными, если рассматривать на промежутке

Тригонометрия. Обратные тригонометрические функции.

Обратные тригонометрические функции (круговые функции, аркфункции) — математические функции, которые являются обратными к тригонометрическим функциям.

К ним обычно относят 6 функций:

  • арксинус (обозначение: arcsin x; arcsin x — это угол, sin которого равен x),
  • арккосинус (обозначение: arccos x; arccos x — это угол, косинус которого равняется x и так далее),
  • арктангенс (обозначение: arctg x или arctan x),
  • арккотангенс (обозначение: arcctg x или arccot x или arccotan x),
  • арксеканс (обозначение: arcsec x),
  • арккосеканс (обозначение: arccosec x или arccsc x).

Арксинус (y = arcsin x) – обратная функция к sin (x = sin y), которая имеет область определения и множество значений . Другими словами возвращает угол по значению его sin.

Арккосинус (y = arccos x) – обратная функция к cos (x = cos y), которая имеет область определения и множество значений . Другими словами возвращает угол по значению его cos.

Арктангенс (y = arctg x) – обратная функция к tg (x = tg y), которая имеет область определения и множество значений . Другими словами возвращает угол по значению его tg.

Арккотангенс (y = arcctg x) – обратная функция к ctg (x = ctg y), которая имеет область определения и множество значений . Другими словами возвращает угол по значению его ctg.

arcsec – арксеканс, возвращает угол по значению его секанса.

arccosec – арккосеканс, возвращает угол по значению его косеканса.

Когда обратная тригонометрическая функция не определяется в указанной точке, значит, ее значение не появится в итоговой таблице. Функции arcsec и arccosec не определяются на отрезке (-1,1), а arcsin и arccos определяются только на отрезке [-1,1].

Читайте также:
Степени чисел - возведение в степень в алгебре, таблица, правила

Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции прибавлением приставки «арк-» (от лат. arcus — дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции связывают с длиной дуги единичной окружности (либо углом, который стягивает эту дугу), которая соответствует тому либо другому отрезку.

Иногда в зарубежной литературе, как и в научных/инженерных калькуляторах, используют обозначениями вроде sin −1 , cos −1 для арксинуса, арккосинуса и тому подобное, — это считается не полностью точным, т.к. вероятна путаница с возведением функции в степень −1−1 » (минус первая степень) определяет функцию x = f -1 (y), обратную функции y = f (x)).

Основные соотношения обратных тригонометрических функций.

Здесь важно обратить внимание на интервалы, для которых справедливы формулы.

Формулы, связывающие обратные тригонометрические функции.

Обозначим любое из значений обратных тригонометрических функций через Arcsin x, Arccos x, Arctan x, Arccot x и сохраним обозначения: arcsin x, arcos x, arctan x, arccot x для их главных значений, тогда связь меж ними выражается такими соотношениями:

где k – всякое целое число. При k = 0 у нас есть главные значения.

Обратные тригонометрические функции их свойства и графики

К обратным тригонометрическим функциям относятся следующие 6 функций: арксинус , арккосинус , арктангенс , арккотангенс , арксеканс и арккосеканс .

Поскольку исходные тригонометрические функции периодические, то обратные функции, вообще говоря, являются многозначными . Чтобы обеспечить однозначное соответствие между двумя переменными, области определения исходных тригонометрических функций ограничивают, рассматривая лишь их главные ветви . Например, функция (y = sin x) рассматривается лишь в промежутке (x in left[ < - pi /2,pi /2>right]). На этом интервале обратная функция арксинус определена однозначно.

Функция арксинус
Арксинусом числа (a) (обозначается (arcsin a)) называется значение угла (x) в интервале (left[ < - pi /2,pi /2>right]), при котором (sin x = a). Обратная функция (y = arcsin x) определена при (x in left[ < -1,1>right]), область ее значений равна (y in left[ < - pi /2,pi /2>right]).

Функция арккосинус
Арккосинусом числа (a) (обозначается (arccos a)) называется значение угла (x) в интервале (left[ <0,pi>right]), при котором (cos x = a). Обратная функция (y = arccos x) определена при (x in left[ < -1,1>right]), область ее значений принадлежит отрезку (y in left[ <0,pi>right]).

Читайте также:
Угол между прямыми - формула нахождения, решение задач

Функция арктангенс
Арктангенсом числа a (обозначается (arctan a)) называется значение угла (x) в открытом интервале (left( <-pi/2, pi/2>right)), при котором (tan x = a). Обратная функция (y = arctan x) определена при всех (x in mathbb), область значений арктангенса равна (y in left( <-pi/2, pi/2>right)).

Функция арккотангенс
Арккотангенсом числа (a) (обозначается (text a)) называется значение угла (x) в открытом интервале (left[ <0,pi>right]), при котором (cot x = a). Обратная функция (y = text x) определена при всех (x in mathbb), область ее значений находится в интервале (y in left[ <0,pi>right]).

Функция арксеканс
Арксекансом числа (a) (обозначается (text a)) называется значение угла (x), при котором (sec x = a). Обратная функция (y = text x) определена при (x in left( < - infty , - 1>right] cup left[ <1,infty >right)), область ее значений принадлежит множеству (y in left[ <0,pi /2>right) cup left( right]).

Функция арккосеканс
Арккосекансом числа (a) (обозначается (text a) или (text a)) называется значение угла (x), при котором (csc x = a). Обратная функция (y = text x) определена при (x in left( < - infty , - 1>right] cup left[ <1,infty >right)), область ее значений принадлежит множеству (y in left[ < - pi /2,0>right) cup left( <0,pi /2>right]).

Главные значения функций арксинус и арккосинус (в градусах)

(x) (-1) (-sqrt 3/2) (-sqrt 2/2) (-1/2) (0) (1/2) (sqrt 2/2) (sqrt 3/2) (1)
(arcsin x) (-90^circ) (-60^circ) (-45^circ) (-30^circ) (0^circ) (30^circ) (45^circ) (60^circ) (90^circ)
(arccos x) (180^circ) (150^circ) (135^circ) (120^circ) (90^circ) (60^circ) (45^circ) (30^circ) (0^circ)

Главные значения функций арктангенс и арккотангенс (в градусах)

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: