Рибосомы – особенности строения, химический состав, функции

Рибосомы

Рибосомы являются важнейшими органоидами клетки, так как на них протекает процесс трансляции — синтез полипептида на матричной РНК (мРНК). Другими словами, рибосомы служат местом белкового синтеза.

Строение рибосом

Рибосомы относятся к немембранным органоидам. Они очень мелкие (около 20 нм), но многочисленные (тысячи и даже миллионы на клетку), состоят из двух частей – субъединиц. В состав субчастиц входят рибосомальные РНК (рРНК) и рибосомные белки, т. е. рибосомы по химическому составу являются рибонуклеопротеидами. Однако в них также присутствует небольшое количество низкомолекулярных соединений. Из-за многочисленности рибосом, рРНК составляет более половины от всей РНК клетки.

Одну из субъединиц называют «малой», вторую – «большой».

В собранной из субъединиц рибосоме выделят два (по одним источникам) или три (по другим) участка, которые называют сайтами. Один из участков обозначают A (aminoacyl) и называют аминоацильным, второй — P (peptidyl) — пептидильный. Данные сайты являются основными каталитическими центрами протекающих на рибосомах реакций. Третий участок обозначают E (exit), через него освободившаяся от синтезируемого полипептида транспортная РНК (тРНК), покидает рибосому.

Кроме перечисленных сайтов на рибосомах есть другие участки, используемые для связывания различных ферментов.

Когда субъединицы диссоциированы (разъединены) специфичность сайтов теряется, т. е. они определяются сочетанием соответствующих областей обеих субъединиц.

Отличие рибосом прокариот и эукариот

Соотношение по массе белков и РНК в рибосоме примерно поровну. Однако у прокариот белков меньше (около 40%).

Размеры как самих рибосом, так и субъединиц выражают в скорости их седиментации (осаждения) при центрифугировании. При этом S обозначает константу Сведберга — единицу, характеризующую скорость оседания в центрифуге (чем больше S, тем быстрее частица осаждается, а значит тяжелее). У прокариот рибосомы имеют размер в 70S, а у эукариот — в 80S (т. е. они тяжелее и крупнее). При этом субъединицы прокариотических рибосом имеют значения 30S и 50S, а эукариотических — 40S и 60S. Размеры рибосом в митохондриях и хлоропластах эукариот сходны с прокариотическими (хотя имеют определенную вариабельность по размерам), что может указывать на их происхождение от древних прокариотических организмов.

У прокариот в состав большой субъединицы рибосом входит две молекулы рРНК и более 30 молекул белка, в состав малой — одна молекула рРНК и около 20 белков. У эукариот в субъединицах больше молекул белка, а также в большой субъединице три молекулы рРНК. Составляющие рибосому белки и молекулы рРНК обладают способностью к самосборке и в итоге образуют сложную трехмерную структуру. Структуру рРНК поддерживают ионы магния.

Синтез рРНК

У эукариот в состав рибосом входят 4 вида рРНК. При этом три образуются из одного транскрипта-предшественника — 45S рРНК. Он синтезируется в ядрышке (на петлях хромосом его формирующем) при помощи РНК-полимеразы-1. Гены рРНК имеют много копий (десятки и сотни) и обычно располагаются на концах разных пар хромосом. После синтеза 45S рРНК разрезается на 18S, 5.8S и 28S рРНК, каждая из которых подвергается тем или иным модификациям.

Четвертый вид рРНК синтезируется вне ядрышка с помощью фермента РНК-полимеразы-3. Это 5S РНК, которая после синтеза не нуждается в процессинге.

Третичная структура рРНК в составе рибосом очень сложная и компактная. Она служит каркасом для размещения рибосомных белков, которые выполняют вспомогательные функции для поддержания структуры и функциональности.

Функция рибосом

Функционально рибосомы являются местом связывания молекул, участвующих в синтезе (мРНК, тРНК, различные факторы). Именно в рибосоме молекулы могут занять друг по отношению к другу такое положение, которое позволит быстро протечь химической реакции реакции.

В эукариотических клетках рибосомы могут находиться свободно в цитоплазме или быть прикрепленными с помощью специальных белков к ЭПС (эндоплазматическая сеть, она же ЭР — эндоплазматический ретикулум).

В процессе трансляции рибосома перемещается по мРНК. Часто по одной нитевидной мРНК двигаются несколько (или множество) рибосом, образуя так называемую полисому (полирибосому).

Научная электронная библиотека

§ 3.1.4. Строение клетки

Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).

Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения

Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.

1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.

Повреждение наружной оболочки приводит к гибели клетки (цитолиз).

2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране

участие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).

Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.

Читайте также:
Дикорастущие растения виды и классы, примеры трав, кустарников и деревьев с названиями, список лекарственных и ядовитых растений и их разновидности, вредители

Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.

3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).

транспортировка питательных веществ и утилизация продуктов обмена клетки;

буферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;

поддержание тургора (упругость) клетки;

все биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.

4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).

Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления

Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.

При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери

Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.

В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.

В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.

Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.

– хранение генетической информации;

– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.

4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.

Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.

5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.

Функция рибосом: обеспечение биосинтеза белка.

6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).

Функции эндоплазматической сети:

– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;

– транспортировка продуктов синтеза ко всем частям клетки.

Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).

7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).

Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент

Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1

При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:

Читайте также:
Жгутиковые: характеристика, классификация, отличия от других простейших

АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.

Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.

АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].

Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).

Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).

Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!

8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.

Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.

9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).

Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.

10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:

Пластиды бывают трех типов:

1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.

2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.

3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).

Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.

11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.

Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:

– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);

– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;

– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).

Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).

Более общая классификация клеток представлена на рис. 3.16.

Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.

Строение и функции рибосом. Биосинтез белков и значение рибосом для организма

Рибосомы — субмикроскопические немембранные органеллы, необходимые для синтеза белка. Они объединяют аминокислоты в пептидную цепь, образуя новые белковые молекулы. Биосинтез осуществляется по матричной РНК путем трансляции.

Особенности строения

Рибосомы находятся на гранулярном эндоплазматическом ретикулуме или свободно плавают в цитоплазме. Крепятся они к эндоплазматической сети своей большой субъединицей и синтезируют белок, который выводится за пределы клетки, используется всем организмом. Цитоплазменные рибосомы в основном обеспечивают внутренние потребности клетки.

Форма шаровидная или овальная, в диаметре около 20нм.

На этапе трансляции к мРНК может прикрепляться несколько рибосом, образуя новую структуру – полисому. Сами же они образуются в ядрышке, внутри ядра.

Выделяют 2 вида рибосом:

  • Малые – находятся в прокариотических клетках, а также в хлоропластах и митохондриальном матриксе. Они не связаны с мембраной и имеют меньшие размеры (в диаметре до 15нм).
  • Большие – находятся в эукариотических клетках, могут достигать в диаметре до 23нм, связываются с эндоплазматической сетью или крепятся к мембране ядра.
Читайте также:
Крестоцветные - определение, признаки, формула и строение

Схема строения

Строение обоих видов идентичное. В состав рибосомы входят две субъединицы — большая и малая, которые в сочетании напоминают гриб. Объединяются они при помощи ионов магния, сохраняя между соприкасающимися поверхностями небольшую щель. При дефиците магния субъединицы отдаляются, происходит дезагрегация и рибосомы уже не могут выполнять свои функции.

Химический состав

Рибосомы состоят из высокополимерной рибосомальной РНК и белка в соотношении 1:1. В них сосредоточено примерно 90% всей клеточной РНК. Малая и большая субъединицы содержат около четырех молекул рРНК, которая имеет вид нитей собранных в клубок. Окружены молекулы белками и формируют вместе рибонуклеопротеид.

Полирибосомы – это объединение информационной РНК и рибосом, которые нанизываются на нить иРНК. В период отсутствия синтезирующих процессов, рибосомы разъединяются и обмениваются субъединицами. При поступлении иРНК они снова собираются в полирибосомы.

Количество рибосом может изменяться в зависимости от функциональной нагрузки на клетку. Десятки тысяч находятся в клетках с высокой митотической активностью (меристема растений, стволовые клетки).

Образование в клетке

Субъединицы рибосом формируются в ядрышке. Матрицей для синтеза рибосомальной РНК является ДНК. Для полного созревания они проходят несколько этапов:

  • Эосома – первая фаза, при этом в ядрышке на ДНК синтезируется лишь рРНК;
  • неосома – структура включающая не только рРНК, но и белки, после ряда модификаций выходит в цитоплазму;
  • рибисома – зрелая органелла, состоящая из двух субъединиц.
Функции элементов рибосом
Структура Строение Функции
Большая субъединица Большая субъединица Треугольная, в диаметре 16нм, состоит из 3 молекул РНК и 33 белковых молекул Трансляция, декодирование генетической информации Трансляция, декодирование генетической информации
Малая субъединица Вогнутая, овальная, в диметре 14нм, состоит из 1 молекулы РНК и 21 белковых молекул Объединение аминокислот, создание пептидных связей, синтез новых молекул белка

Биосинтез белков на рибосомах

Трансляция или синтез белков на рибосомах с матрицы иРНК – конечный этап преобразования генетической информации в клетках. Во время трансляции информация, закодированная в нуклеиновых кислотах, переходит в белковые молекулы со строгой последовательностью аминокислот.

Трансляция – весьма непростой этап (в сравнении с репликацией и транскрипцией). Для проведения трансляции в процесс включаются все виды РНК, аминокислот, множество ферментов, которые могут исправлять погрешности друг друга. Самые важные участники трансляции – это рибосомы.

После транскрипции, новообразованная молекула иРНК, выходит из ядра в цитоплазму. Здесь после нескольких преобразований она соединяется с рибосомой. При этом аминокислоты приводятся в действие после взаимодействия с энергетическим субстратом – молекулой АТФ.

Аминокислоты и иРНК имеют разный химический состав и без постороннего участия не могут взаимодействовать между собой. Для преодоления этой несовместимости существует транспортная РНК. Под действием ферментов аминокислоты соединяются с тРНК. В таком виде они переносятся на рибосому и тРНК, с определенной аминокислотой, прикрепляется на иРНК в предназначенном месте. Далее рибосомальные ферменты формируют пептидную связь между присоединенной аминокислотой и строящимся полипептидом. После рибосома перемещается по цепи информационной РНК, оставляя участок для прикрепления следующей аминокислоты.

Рост полипептида идет до того момента, пока рибосома не встретит «стоп-кодон», который сигнализирует об окончании синтеза. Для освобождения новосинтезированного пептида от рибосомы включаются факторы терминации, окончательно завершающие биосинтез. К последней аминокислоте прикрепляется молекула воды, а рибосома распадается на две субъединицы.

Когда рибосома продвигается дальше по иРНК, она освобождает начальный отрезок цепи. К нему снова может присоединиться рибосома, которая начнет новый синтез. Таким образом, используя одну матрицу для биосинтеза, рибосомы создают одномоментно множество копий белка.

Роль рибосом в организме

  1. Рибосомы синтезируют белок для собственных нужд клетки и за ее пределы. Так в печени образуются плазменные факторы свертывания крови, плазмоциты продуцируют гамма-глобулины.
  2. Считывание закодированной информации с РНК, соединение аминокислот в запрограммированном порядке с образованием новых белковых молекул.
  3. Каталитическая функция – формирование пептидных связей, гидролиз ГТФ.
  4. Свои функции в клетке рибосомы выполняют более активно в виде полирибосом. Эти комплексы способны одновременно синтезировать несколько молекул белка.

  • Комплексные пищевые добавки
  • Микробиологические экспресс-тесты
  • Антисептики и дез.средства
  • Стартовые культуры, закваски

ГК “Униконс”

Продвижение и реализация комплексных пищевых добавок, антисептиков и др. продукции.

“Антисептики Септоцил”

Септоцил. Бытовая химия, антисептики.

“Петритест”

Микробиологические экспресс-тесты. Первые результаты уже через 4 часа.

“АльтерСтарт”

Закваски, стартовые культуры. Изготовление любых заквасок для любых целей.

3.2. БАКТЕРИАЛЬНАЯ КЛЕТКА

Бактерии (прокариоты) — это большая группа микроорганизмов (около 1600 видов), большинство из которых одноклеточные (см. рис. 8). Основные формы бактерий — шаровидная, палочковидная и извитая. Размеры бактерий очень малы: от десятых долей микрометра до нескольких микрометров. В среднем размер большинства бактерий 0,5-1 мкм, а средняя длина палочковидных бактерий — 2-5 мкм. Встречаются бактерии, размеры которых значительно превышают среднюю величину, а некоторые находятся на грани видимости в обычных оптических микроскопах. Масса бактериальной клетки составляет приблизительно 4-10 13 г. Особенностью размножения бактерий является быстрота протекания процесса: некоторые виды делятся через каждые 15-20 мин, другие — через 5-10 ч. При таком делении число клеток бактерий за сутки достигает огромного количества. Это часто наблюдается на пищевых продуктах, например, быстрое скисание молока вследствие развития молочнокислых бактерий, быстрая порча мяса и рыбы за счет развития гнилостных бактерий. Другой отличительной характеристикой микроорганизмов является разнообразие их физиологических и биохимических свойств. Некоторые микроорганизмы могут расти в экстремальных условиях. Значительное число микроорганизмов могут жить при температуре — 196°С (температура жидкого азота). Другие виды микроорганизмов — термофильные, их рост наблюдается при температуре 80°С и выше. Многие микроорганизмы устойчивы к высокому гидростатическому давлению (в глубинах морей и океанов; месторождениях нефти). Также многие микроорганизмы сохраняют жизнедеятельность в условиях глубокого вакуума. Некоторые микроорганизмы выдерживают высокие дозы ультрафиолетовой или ионизирующей радиации.

Разнообразие бактерий

Основной (низшей) таксономической единицей является вид. Виды объединяются в роды, роды — в семейства, семейства— в порядки, порядки — в классы, классы — в отделы, отделы — в царства.

Вид — это совокупность популяций, имеющих общее происхождение и генотип, морфологические, физиологические и другие признаки, способные в определенных условиях вызывать одинаковые процессы.

Культура — микроорганизмы, полученные от животного, человека, растения или субстрата внешней среды и выращенные на питательной среде. Чистые культуры состоят из особей одного вида, смешанные представляют собой скопления клеток разных видов.

Штамм — это культура одного и того же вида, выделенная из разных сред и отличающаяся незначительными изменениями свойств: чувствительность к лекарственным препаратам, неодинаковая биохимическая активность и др. Например, кишечная палочка, выделенная от человека, и такая же палочка, выделенная от свиней, могут быть разными штаммами.

Клон — культура микроорганизмов, выделенная из одной клетки.

Клетка бактерии обладает принципиальными особенностями строения (см. рис. 9).

Схема строения бактериальной клетки:

1 — гранулы поли-β-оксимасляной кислоты; 2 — жировые капельки; 3 — включения серы;
4 — трубчатые тилакоиды; 5 — пластинчатые тилакоиды; 6 — пузырьки; 7— хроматофоры;
8 — ядро (нуклеоид); 9 — рибосомы; 10 — цитоплазма; 11 — базальное тельце; 12 — жгутики;
13 — капсула; 14 — клеточная стенка; 15 — цитоплазматическая мембрана; 16 — мезосома;
17 — газовые вакуоли; 18 — ламеллярные структуры; 19 — гранулы полисахарида;
20 — гранулы полифосфата.

Основные структуры бактериальной клетки представлены в верхней части рисунка; дополнительные, мембранные структуры, имеющиеся у фототрофных и нефототрофных бактерий, — в средней части; включения запасных веществ — в нижней.

Бактериальная клетка состоит из протопласта, окруженного наружной клеточной оболочкой, вакуолей, различных включений, имеющихся в составе протоплазмы.

Функцию ядра у бактерий выполняет циркулярно замкнутая и сильно скрученная компактно уложенная молекула ДНК. Такое неограниченное мембраной ядро называют нуклеоидом, а в генетике — геномом или хромосомой. Обычно в покоящихся бактериях содержится один нуклеоид. Разные формы бактерий имеет различный тип ядерного аппарата. У одних ядерное вещество находится в дисперсном состоянии обособленно от цитоплазмы. У других в протоплазме содержатся отдельные зерна хроматина, участвующие в образовании некоторых структур клетки.

Химическая природа ядерных веществ довольно сложная. Основное место занимает нуклеопротеидный комплекс, который состоит из двух основных компонентов — особого белка и тимонуклеиновой кислоты.

Клеточная стенка (оболочка) — важный структурный элемент большинства бактерий; плотная, бесцветная. На ее долю приходится от 5 до 20% сухих веществ клетки. Клеточная стенка обладает эластичностью, служит механическим барьером между протопластом и окружающей средой, придает клетке определенную форму. Оболочка проницаема для воды и низкомолекулярных веществ, имеет слоистое строение. Толщина клеточной стенки 10-35 нм.

Химический состав оболочки неоднороден, резко отличен от оболочек высших растений. В ее состав входят специфические полимерные комплексы. Главным компонентом клеточной стенки бактерии является особый, только им присущий гетерополимер — пептидогликан (муреин). Этот полимер состоит из параллельно чередующихся полисахаридных цепей, которые скреплены пептидными связями. Количественное содержание пептидогликана определяет характер окраски бактерий и других прокариот по Грамму. Те из них, которые содержат в клеточной стенке большое количество (около 90%) пептидогликана окрашиваются по Грамму в сине-фиолетовыйцвет, и их называют грамположительными, все другие, содержащие в оболочке 5-20% пептидогликана, — в розовый цвет, и их называют грамотрицательными. Толщина слоя пептидогликана в клеточной стенке грамположительных бактерий в несколько раз больше, чем у грамотрицательных.

Из азотистых веществ в состав бактериальных оболочек входят белковые вещества, аминокислоты. Соотношение веществ варьирует.

Оболочка у некоторых бактерий может подвергаться разбуханию и ослизнению. Слизистый слой бывает очень тонким, но может достигать и значительной толщины, образуя капсулу. Размер капсулы может превышать величину бактериальной клетки. Капсулы легко обнаруживаются при окраске фуксином. Капсула защищает клетку от механических повреждений и высыхания, создает дополнительный осмотический барьер, служит препятствием для проникновения фагов, антител, иногда она является источником запасных питательных веществ.

Химический состав слизей различен у отдельных видов. В составе бактериальных слизей обнаружены полисахариды, азотсодержащие вещества.

При попадании в неблагоприятные условия у многих бактерий усиливается слизеобразование. Ослизнению подвергаются мясо, колбасы, творог; наблюдается тягучесть молока, сахарного сиропа, рассолов, квашеных овощей, пива, вина.

Цитоплазматическая мембрана толщиной 7-10 нм отделяет от клеточной стенки содержимое клетки. На ее долю приходится 8-15% сухого вещества клетки и 70-90% липидов клетки. Мембрана полупроницаема, играет важную роль в обмене веществ между клеткой и окружающей средой. Цитоплазматическая мембрана состоит из трех слоев: одного липидного и двух, примыкающих к нему с обеих сторон, белковых. Содержит 60-65% белка и 35-40% липидов, в ней локализованы ферменты.

Цитоплазма бактериальной клетки представляет собой полужидкую, вязкую, коллоидную систему. Имеет сложный изменяющийся химический состав. Основными химическими соединениями являются белки, нуклеиновые кислоты, липиды, Н20.

Местами цитоплазма пронизана мембранными структурами — мезосомами, которые произошли от цитоплазматической мембраны и сохранили с ней связь. В мезосомах содержатся ферменты, участвующие в снабжении бактериальной клетки энергией.

Рибосомы рассеяны в цитоплазме в виде гранул размером 20-30 нм. Они состоят примерно на 60% из РНК и на 40% из белка. Основная функция рибосом — синтез белка клетки. В бактериальной клетке в зависимости от ее возраста и условий жизни может быть 5- 50 тыс. рибосом.

Цитоплазматические включения бактериальной клетки разнообразны, в основном это запасные питательные вещества, которые откладываются в клетках, развивающихся в условиях избытка питательных веществ, и потребляются, когда клетки попадают в условия голодания. В клетках откладываются полисахариды (гликоген, крахмалоподобное вещество гранулеза), липиды, полифосфаты, молекулярная сера.

При хранении сырья и продуктов в охлажденном состоянии рост микроорганизмов на них не исключается, а лишь замедляется. Поэтому сроки хранения охлажденных продуктов непродолжительны и зависят от температуры хранения, относительной влажности воздуха в помещении, исходной степени обсеменения продукта психрофильными микроорганизмами: чем их больше, тем меньше срок хранения.

Жгутики — это органы движения бактерий. Представляют собой вращающиеся полужесткие спирально изогнутые нити из белка флагеллина, который обладает способностью сокращаться. Длина жгутиков больше самих бактерий и колеблется от 5 до 10 мкм. По типу расположения и числу жгутиков бактерии делят на четыре группы: монотрихи — имеют один жгутик на полюсе клетки; лофотрихи — с пучком жгутиков на одном из концов палочки; амфитрихи — с двумя пучками жгутиков на полюсах; перитрихи — с множеством жгутиков вокруг бактерии. Жгутикование характерно, например, для кишечных бактерий, столбняка и ботулизма, холерного вибриона. Характер и скорость движения неодинаковы у отдельных видов бактерий. Подвижность бактерий может быть утрачена под влиянием неблагоприятных условий жизни, при старении клеток и механических воздействиях.

Многие микроорганизмы при попадании в неблагоприятные условия не погибают и сохраняют жизнеспособность длительное время, переходя в анабиотическое состояние. При этом бактериальная клетка из вегетативного состояния переходит в споровое, позволяющее сохранять жизнеспособность в течение длительного времени.

Споры — это покоящиеся клетки, обладающие устойчивостью к неблагоприятным факторам внешней среды, служащие для сохранения вида. Спорообразование происходит почти исключительно у палочковидных бактерий. В клетке бактерий образуется только одна спора.

Спорообразование обычно наступает при обеднении среды питательными веществами или при накоплении в ней продуктов обмена. Перед спорообразованием в клетке накапливаются запасные питательные вещества (белки, липиды), образуются специфическое для спор вещество — дипиколиновая кислота.

Спора развивается из части протопласта (цитоплазмы с ядерным материалом) материнской вегетативной клетки. По мере развития и созревания закладываются ее оболочки, число и толщина которых варьирует у разных бактерий. Поверхность наружной оболочки может быть гладкой либо иметь выросты. Процесс спорообразования происходит в течение нескольких часов.

Обычно споры имеют круглую или овальную форму, располагаются в центре клетки, ближе к концу и на самом конце клетки. Диаметр спор может превышать ширину клетки.

После созревания споры материнская вегетативная клетка отмирает, оболочка ее разрушается и спора высвобождается. Плотная оболочка, малое содержание свободной воды, наличие дипиколиновой кислоты создают большую устойчивость спор к физико-химическим воздействиям. Так, споры некоторых бактерий выдерживают кипячение в течение нескольких часов, могут длительное время сохраняться (десятки и сотни лет) в сухом состоянии, более устойчивы по отношению к действию химических ядов, радиации и других факторов внешней среды.

В благоприятных условиях споры прорастают в вегетативные клетки. При этом они набухают вследствие поглощения воды, активизируются их ферменты, усиливаются биохимические процессы, приводящие к росту. Затем происходит растворение внешней оболочки и через образовавшееся отверстие молодая бактериальная клетка выходит наружу.

Порчу пищевых продуктов вызывают лишь вегетативные клетки. Знание факторов, способствующих образованию спор у бактерий, и факторов, которые вызывают их прорастание в вегетативные клетки, имеет значение в выборе способа обработки продуктов с целью предотвращения их микробиальной порчи.

К спорообразующим аэробным и факультативно-анаэробным

Характеристика рибосом, типы, структура, функции

рибосомы они являются наиболее распространенными клеточными органеллами и участвуют в синтезе белков. Они не окружены мембраной и образованы двумя типами субъединиц: большой и малой, как правило, большая субъединица почти вдвое меньше.

Прокариотическая линия имеет 70S рибосомы, состоящие из большой 50S субъединицы и небольшой 30S. Аналогично, рибосомы эукариотической линии состоят из большой субъединицы 60S и маленькой 40S субъединицы..

Рибосома является аналогом фабрики в движении, способной считывать РНК-мессенджер, переводить ее в аминокислоты и связывать их пептидными связями..

Рибосомы эквивалентны почти 10% от общего количества бактерий и более 80% от общего количества РНК. В случае эукариот их не так много по сравнению с другими белками, но их количество больше..

В 1950 году исследователь Джордж Паладе впервые визуализировал рибосомы, и это открытие было удостоено Нобелевской премии по физиологии и медицине..

  • 1 Общая характеристика
  • 2 Структура
  • 3 типа
    • 3.1 Рибосомы у прокариот
    • 3.2 Рибосомы у эукариот
    • 3.3 Рибосомы в Аркеасе
    • 3.4 Коэффициент седиментации
  • 4 функции
    • 4.1 Трансляция белков
    • 4.2 Передача РНК
    • 4.3 Химические стадии синтеза белка
    • 4.4 Рибосомы и антибиотики
  • 5 Синтез рибосом
    • 5.1 Рибосомные РНК-гены
  • 6 Происхождение и эволюция
  • 7 ссылок

Общие характеристики

Рибосомы являются важными компонентами всех клеток и связаны с синтезом белка. Они очень маленькие по размеру, поэтому их можно визуализировать только в свете электронного микроскопа..

Рибосомы свободны в цитоплазме клетки, они прикреплены к шероховатой эндоплазматической сети – рибосомы дают «морщинистый» вид – и в некоторых органеллах, таких как митохондрии и хлоропласты..

Рибосомы, прикрепленные к мембранам, ответственны за синтез белков, которые будут вставлены в плазматическую мембрану или отправлены наружу клетки..

Свободные рибосомы, которые не связаны с какой-либо структурой в цитоплазме, синтезируют белки, предназначение которых находится внутри клетки. Наконец, рибосомы митохондрий синтезируют белки для митохондриального использования..

Таким же образом несколько рибосом могут соединяться и образовывать «полирибосомы», образуя цепь, связанную с РНК-мессенджером, синтезируя один и тот же белок, многократно и одновременно

Все они состоят из двух подразделений: одно называется большим или большим, а другое маленьким или меньшим.

Некоторые авторы считают, что рибосомы являются не мембранными органеллами, поскольку им не хватает этих липидных структур, хотя другие исследователи сами не считают их органеллами..

структура

Рибосомы представляют собой небольшие клеточные структуры (от 29 до 32 нм, в зависимости от группы организмов), округлые и плотные, состоящие из рибосомальной РНК и белковых молекул, которые связаны друг с другом..

Наиболее изученными являются рибосомы эубактерий, архей и эукариот. В первой линии рибосомы проще и меньше. Эукариотические рибосомы, с другой стороны, являются более сложными и более крупными. У архей рибосомы в некоторых аспектах больше похожи на обе группы.

Рибосомы позвоночных и покрытосеменных (цветковых растений) особенно сложны.

Каждая рибосомная субъединица состоит в основном из рибосомальной РНК и большого разнообразия белков. Большая субъединица может состоять из небольших молекул РНК, в дополнение к рибосомальной РНК.

Белки связаны с рибосомальной РНК в определенных регионах, следуя порядку. В рибосомах можно дифференцировать несколько активных сайтов, таких как каталитические зоны.

Рибосомная РНК имеет решающее значение для клетки, и это можно увидеть в ее последовательности, которая практически не изменилась в ходе эволюции, отражая высокое селективное давление против любых изменений.

тип

Рибосомы у прокариот

Бактерии, как Кишечная палочка, имеют более 15000 рибосом (в пропорциях это эквивалентно почти четверти сухой массы бактериальной клетки).

Рибосомы в бактериях имеют диаметр около 18 нм и состоят из 65% рибосомальной РНК и только 35% белков различных размеров, от 6000 до 75000 кДа..

Большая субъединица называется 50S, а маленькая 30S, которые в совокупности образуют структуру 70S с молекулярной массой 2,5 × 10. 6 кД.

Субъединица 30S вытянута и не симметрична, тогда как 50S толще и короче.

Небольшая субъединица Кишечная палочка он состоит из 16S рибосомальной РНК (1542 основания) и 21 белка, а в большой субъединице – 23S рибосомальной РНК (2904 основания), 5S (1542 основания) и 31 белка. Белки, которые их составляют, являются основными, и их количество варьируется в зависимости от структуры..

Молекулы рибосомальной РНК вместе с белками группируются во вторичной структуре подобно другим типам РНК..

Рибосомы у эукариот

Рибосомы у эукариот (80S) крупнее, с более высоким содержанием РНК и белка. РНК длиннее и называются 18S и 28S. Как и у прокариот, в составе рибосом доминирует рибосомная РНК.

У этих организмов рибосома имеет молекулярную массу 4,2 × 10. 6 кДа, и он разбит на 40S и 60S субъединицу.

Субъединица 40S содержит одну молекулу РНК, 18S (1874 основания) и около 33 белков. Аналогично, субъединица 60S содержит 28S РНК (4718 оснований), 5,8S (160 оснований) и 5S (120 оснований). Кроме того, он состоит из основных белков и кислотных белков..

Рибосомы в Аркеасе

Археи представляют собой группу микроскопических организмов, которые напоминают бактерии, но они отличаются по многим характеристикам, которые составляют отдельный домен. Они живут в разных условиях и способны колонизировать экстремальные условия.

Типы рибосом, обнаруженные у архей, сходны с рибосомами эукариотических организмов, хотя они также имеют определенные характеристики бактериальных рибосом..

Он имеет три типа молекул рибосомальной РНК: 16S, 23S и 5S, связанные с 50 или 70 белками, в зависимости от вида исследования. По размеру рибосомы архей ближе к бактериальным (70S с двумя субъединицами 30S и 50S), но по своей первичной структуре они ближе к эукариотам.

Поскольку археи обычно обитают в средах с высокими температурами и высокими концентрациями соли, их рибосомы обладают высокой устойчивостью.

Коэффициент седиментации

S или Svedbergs, относится к коэффициенту оседания частиц. Выражает связь между постоянной скоростью седиментации между приложенным ускорением. Эта мера имеет временные измерения.

Обратите внимание, что Сведберги не являются добавками, так как они учитывают массу и форму частицы. По этой причине в бактериях рибосома, состоящая из субъединиц 50S и 30S, не добавляет 80S, а также субъединицы 40S и 60S не образуют рибосому 90S..

функции

Рибосомы отвечают за процесс синтеза белков в клетках всех организмов, являясь универсальным биологическим механизмом..

Рибосомы – вместе с РНК-переносчиком и РНК-мессенджером – способны декодировать сообщение ДНК и интерпретировать его в последовательности аминокислот, которые образуют все белки организма, в процессе, называемом трансляцией..

В свете биологии, перевод слова относится к изменению «языка» от нуклеотидных триплетов к аминокислотам..

Эти структуры являются центральной частью трансляции, где происходит большинство реакций, таких как образование пептидных связей и высвобождение нового белка.

Трансляция белков

Процесс образования белка начинается со связывания между РНК-мессенджером и рибосомой. Посланник движется через эту структуру в определенном конце, называемом «кодон начала цепи».

Когда РНК-мессенджер проходит через рибосому, образуется молекула белка, потому что рибосома способна интерпретировать сообщение, закодированное в мессенджере..

Это сообщение закодировано в триплетах нуклеотидов, в которых каждые три основания указывают определенную аминокислоту. Например, если РНК-мессенджер несет последовательность: AUG AUU CUU UUG GCU, образованный пептид состоит из аминокислот: метионина, изолейцина, лейцина, лейцина и аланина..

Этот пример демонстрирует «вырождение» генетического кода, поскольку более одного кодона – в данном случае CUU и UUG – кодируют аминокислоту одного типа. Когда рибосома обнаруживает стоп-кодон в РНК-мессенджере, трансляция заканчивается.

Рибосома имеет сайт A и сайт P. Сайт P связывает пептидил-тРНК, а в сайт A он входит в аминоацил-тРНК..

Передача РНК

Передающие РНК ответственны за транспортировку аминокислот к рибосоме и имеют последовательность, комплементарную триплету. Для каждой из 20 аминокислот, из которых состоят белки, существует транспортная РНК..

Химические стадии синтеза белка

Процесс начинается с активации каждой аминокислоты связыванием АТФ в комплексе аденозинмонофосфата, высвобождая высокоэнергетические фосфаты..

На предыдущем этапе получается аминокислота с избыточной энергией, и происходит связывание с соответствующей ей РНК-переносчиком с образованием комплекса аминокислота-тРНК. Здесь происходит высвобождение аденозинмонофосфата.

В рибосоме трансферная РНК находит РНК-мессенджер. На этом этапе последовательность переносящей или антикодонной РНК гибридизуется с кодоном или триплетом РНК-мессенджера. Это приводит к выравниванию аминокислоты с ее правильной последовательностью.

Фермент пептидилтрансфераза ответственен за катализ образования пептидных связей, которые связывают аминокислоты. Этот процесс потребляет большое количество энергии, так как он требует образования четырех высокоэнергетических связей для каждой аминокислоты, которая связывается с цепью.

Реакция удаляет гидроксильный радикал на СООН-конце аминокислоты и удаляет водород на NH-конце2 другой аминокислоты. Реактивные области двух аминокислот связывают и создают пептидную связь.

Рибосомы и антибиотики

Поскольку синтез белка является обязательным событием для бактерий, определенные антибиотики нацелены на рибосомы и различные стадии процесса трансляции..

Например, стрептомицин связывается с небольшой субъединицей, чтобы вмешиваться в процесс трансляции, вызывая ошибки при чтении РНК-мессенджера..

Другие антибиотики, такие как неомицины и гентамицины, также могут вызывать ошибки трансляции, связанные с небольшой субъединицей..

Синтез рибосом

Весь клеточный механизм, необходимый для синтеза рибосом, находится в ядрышке, плотной области ядра, которая не окружена мембранными структурами..

Ядрышко представляет собой вариабельную структуру, зависящую от типа клеток: оно крупное и заметное в клетках с высокими потребностями в белке и является практически незаметной областью в клетках, которые синтезируют небольшое количество белков.

Процессинг рибосомальной РНК происходит в этой области, где она связана с рибосомными белками и дает продукты гранулярной конденсации, которые являются незрелыми субъединицами, которые образовали функциональные рибосомы..

Субъединицы транспортируются вне ядра – через ядерные поры – в цитоплазму, где они собираются в зрелые рибосомы, которые могут начать синтез белка.

Гены рибосомальной РНК

У людей гены, кодирующие рибосомные РНК, обнаружены в пяти парах специфических хромосом: 13, 14, 15, 21 и 22. Поскольку клетки требуют большого количества рибосом, гены в этих хромосомах повторяются несколько раз.

Гены ядрышек кодируют рибосомальные РНК 5.8S, 18S и 28S и транскрибируются РНК-полимеразой в транскрипте-предшественнике 45S. 5S рибосомная РНК не синтезируется в ядрышке.

Происхождение и эволюция

Современные рибосомы, должно быть, появились во времена LUCA, последнего универсального общего предка (сокращений на английском языке). последний универсальный общий предок), вероятно, в гипотетическом мире РНК. Предполагается, что трансфер РНК были фундаментальными для эволюции рибосом.

Эта структура может появиться как комплекс с самореплицирующимися функциями, которые впоследствии приобретают функции для синтеза аминокислот. Одной из самых выдающихся характеристик РНК является ее способность катализировать собственную репликацию..

Научная электронная библиотека

§ 3.1.4. Строение клетки

Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).

Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения

Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.

1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.

Повреждение наружной оболочки приводит к гибели клетки (цитолиз).

2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране

участие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).

Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.

Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.

3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).

транспортировка питательных веществ и утилизация продуктов обмена клетки;

буферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;

поддержание тургора (упругость) клетки;

все биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.

4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).

Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления

Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.

При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери

Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.

В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.

В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.

Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.

– хранение генетической информации;

– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.

4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.

Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.

5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.

Функция рибосом: обеспечение биосинтеза белка.

6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).

Функции эндоплазматической сети:

– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;

– транспортировка продуктов синтеза ко всем частям клетки.

Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).

7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).

Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент

Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1

При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:

АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.

Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.

АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].

Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).

Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).

Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!

8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.

Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.

9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).

Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.

10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:

Пластиды бывают трех типов:

1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.

2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.

3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).

Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.

11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.

Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:

– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);

– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;

– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).

Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).

Более общая классификация клеток представлена на рис. 3.16.

Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.

Рибосомы, их структура и роль в синтезе белка

Вы будете перенаправлены на Автор24

Строение рибосом

Рибосомы – это субмикроскопические немебранные органеллы, основной функцией которых является биосинтез белка.

Они объединяют аминокислоты в пептидную цепь и формируют новые молекулы белка, которые необходимы клетке для осуществления всех процессов жизнедеятельности.

Биосинтез белка в данном случае осуществляется по матричной РНК путем процесса трансляции.

Рибосомы имеют несколько ключевых особенностей строения:

  • находятся в гранулярном эндоплазматическом ретикулуме, иногда свободно плавают в цитоплазме;
  • большой субъединицей рибосома крепится к эндоплазматической сети и синтезирует белок, который выводится за пределы клетки и используется организмом на обеспечение процесса жизнедеятельности;
  • рибосомы, которые находятся в цитоплазме в целом обеспечивают процессы жизнедеятельности внутри клетки.

Рибосома имеет шаровидную форму и диаметр около 20 нм. В процессе трансляции к матричной РНК может прикрепиться сразу несколько рибосом, формируя структуру – полисому. Рибосомы образуются в ядрышке, во внутреннем пространстве ядра.

Существует два вида рибосом:

  • малые рибосомы, которых находятся в прокариотических клетках, иногда в хлоропластах и матриксе митохондрии, они связаны с мембраной;
  • большие рибосомы характерны для клеток эукариот и связываются с эндоплазматической сетью или крепятся к мембране ядра.

Рисунок 1. Схема строения рибосомы. Автор24 — интернет-биржа студенческих работ

Строение обоих видов рибосом идентичное. Они состоят из двух субъединиц: большой и малой. Эти части объединяются при помощи ионов магния, а между соприкасающимися поверхностями остается лишь небольшая щель. При дефиците магния субъединицы отдаляются, происходит дезагрегация и рибосомы уже не могут выполнять свои функции.

Готовые работы на аналогичную тему

Химический состав рибосомы также оригинален. Рибосомы состоят из высокополимерной рибосомальной РНК. Также в их составе выделяют белок. Обе субъединицы содержат около 4 молекул РНК, они имеют вид нитей, которые собраны в РНК. Эти нити окружаются белками и формируют комплексный рибонуклеопротеид.

Также рибосомы могут объединяться в специализированные комплексы полирибосомы.

Полирибосомы – это объединение информационной РНК и рибосом, которые нанизываются на ее нить. В ходе синтезирующих процессов рибосомы разъединяются и обмениваются субъединицами. В момент поступления т-РНК они снова собираются в полирибосому.

Роль рибосом в процессе биосинтеза белка

Количество рибосом может поменяться в зависимости от функциональной нагрузки на клетку. Когда клетка вступает в период митотической активности и в ней в этот период можно обнаружить десятки тысяч рибосом. Такое количество характерно для меристем растений, а также стволовых клеток.

Рибосомы определенным образом образуются в клетке. Они формируются в ядрышке и матрицей для их создания является ДНК. До полного созревания они проходят несколько ключевых этапов:

  • эосома или процесс синтеза части р – РНК в ядрышке;
  • неосома или структура с р – РНК и белками, которые проходят в цитоплазму лишь после ряда модификаций;
  • рибосома или зрелая органелла, которая готова к выполнению собственных функций в полной мере и состоящая из двух субъединиц.

Каждый элемент рибосомы выполняет собственную уникальную функцию. Большая субъединица выполняет функции трансляции, декодирования генетической информации. Малая субъединица в свою очередь отвечает за объединение аминокислот, создание пептидных связей и синтез новых молекул белка.

Трансляция – это процесс синтеза белка на рибосомах или конечный этап преобразования генетической информации в клетке. В процессе трансляции информация закодирована в нуклеиновых кислотах и переходит в белковые молекулы, которые обладают строгой аминокислотной последовательностью.

Трансляция представляет собой достаточно непростой этап в формировании белковой молекулы. Для проведения трансляции в процесс включаются все виды РНК, аминокислот, множество ферментов, которые могут исправлять погрешности друг друга. Самые важные участники трансляции – это рибосомы.

После транскрипции новая молекула и – РНК выходит из ядра в цитоплазму, потом происходит несколько преобразований, и она соединяется с рибосомой. Аминокислоты начинают действовать после соединения с энергетическим субстратом ДНК.

Так как аминокислоты имеют различный состав РНК (химический). Без постороннего участия их процесс взаимодействия между собой становится невозможным. Чтобы преодолеть подобную несовместимость существует молекула транспортной РНК. Процесс соединения всех типов аминокислот становится возможным благодаря действию различных ферментов. В дальнейшем все рибосомальные ферменты участвуют в образовании пептидной связи. Далее запускается процесс перемещения рибосомы по цепи и – РНК. При этом остается участок для прикрепления новой аминокислоты.

В дальнейшем происходит рост полипептида, но до того момента, пока рибосома не встретит «стоп – кодон», который является сигналом к окончанию процесса синтеза. Для того, чтобы пептид смог освободиться от рибосомы, включаются факторы терминами, которые уже завершают процесс синтеза окончательно.

Последняя аминокислота прикрепляет к себе молекулу воды, а рибосома распадается на две субъединицы. В процессе продвижения рибосомы по и- РНК, она освобождает начальный отрезок цепи. К нему снова может прицепиться рибосома, и процесс биосинтеза белка запуститься снова.

Тем самым на одной матрице для биосинтеза происходит создание множества копий белка в течение одного момента времени.

Рибосомы важны для биосинтеза белка, поскольку они создают его для нужд самой клетки и за ее пределами.

Например, в печени создаются плазменные факторы свертывания крови. Также рибосомы выполняют своего рода каталитическую функцию при формировании пептидных связей в молекуле вновь созданного белка.

Активация функций рибосом происходит в тот момент, когда они объединяются в полирибосомы. Эти комплексы могут формировать одновременно несколько молекул белка.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: