Соляная кислота: описание вещества, интересные факты

Соляная кислота: влияние на экологию и здоровье человека. Справка

Соляная кислота (хлористоводородная кислота) – водный раствор хлористого водорода HCl, представляет собой прозрачную бесцветную жидкость с острым запахом хлористого водорода. Техническая кислота имеет желтовато-зеленый цвет из-за примесей хлора и солей железа. Максимальная концентрация соляной кислоты около 36% HCl; такой раствор имеет плотность 1,18 г/см3. Концентрированная кислота на воздухе “дымит”, так как выделяющийся газообразный HCl образует с водяным паром мельчайшие капельки соляной кислоты.

Соляная кислота не горюча, не взрывоопасна. Она является одной из самых сильных кислот, растворяет (с выделением водорода и образованием солей – хлоридов) все металлы, стоящие в ряду напряжений до водорода. Хлориды образуются и при взаимодействии соляной кислоты с окислами и гидроокисями металлов. С сильными окислителями она ведет себя как восстановитель.

Соли соляной кислоты – хлориды, за исключением AgCl, Hg2Cl2, хорошо растворимы в воде. К ней устойчивы стекло, керамика, фарфор, графит, фторопласт.

Получают соляную кислоту растворением в воде хлористого водорода, который синтезируют или непосредственно из водорода и хлора или получают действием серной кислоты на хлорид натрия.

Выпускаемая техническая соляная кислота имеет крепость не менее 31% HCl (синтетическая) и 27,5% HCl (из NaCI). Торговую кислоту называют концентрированной, если она содержит 24% и больше HCl, если содержание HCl меньше, то кислота называется разбавленной.

Соляную кислоту применяют для получения хлоридов различных металлов, органических полупродуктов и синтетических красителей, уксусной кислоты, активированного угля, различных клеев, гидролизного спирта, в гальванопластике. Ее применяют для травления металлов, для очистки различных сосудов, обсадных труб буровых скважин от карбонатов, окислов и др. осадков и загрязнений. В металлургии кислотой обрабатывают руды, в кожевенной промышленности – кожу перед дублением и крашением. Соляную кислоту применяют в текстильной, пищевой промышленности, в медицине и т. д.

Соляная кислота играет важную роль в процессах пищеварения, она является составной частью желудочного сока. Разведенную соляную кислоту назначают внутрь главным образом при заболеваниях, связанных с недостаточной кислотностью желудочного сока.

Транспортируют соляную кислоту в стеклянных бутылях или гуммированных (покрытых слоем резины) металлических сосудах, а также в полиэтиленовой посуде.

Соляная кислота очень опасна для здоровья человека. При попадании на кожу вызывает сильные ожоги. Особенно опасно попадание в глаза.

При попадании соляной кислоты на кожные покрытия ее необходимо немедленно смыть обильной струей воды.

Очень опасны туман и пары хлороводорода, образующиеся при взаимодействии с воздухом концентрированной кислоты. Они раздражают слизистые оболочки и дыхательные пути. Длительная работа в атмосфере HCl вызывает катары дыхательных путей, разрушение зубов, помутнение роговицы глаз, изъязвление слизистой оболочки носа, желудочно-кишечные расстройства.
Острое отравление сопровождается охриплостью голоса, удушьем, насморком, кашлем.

В случае утечки или разлива соляная кислота может нанести существенный ущерб окружающей среде. Во-первых, это приводит к выделению паров вещества в атмосферный воздух в количествах превышающих санитарно-гигиенические нормативы, что может повлечь отравление всего живого, а также появлению кислотных осадков, которые могут привести к изменению химических свойств почвы и воды.

Во-вторых, она может просочиться в грунтовые воды, в результате чего может произойти загрязнение внутренних вод.
Там, где вода в реках и озерах стала довольно кислой (рН менее 5) исчезает рыба. При нарушении трофических цепей сокращается число видов водных животных, водорослей и бактерий.

В городах кислотные осадки ускоряют процессы разрушения сооружений из мрамора и бетона, памятников и скульптур. При попадании на металлы соляная кислота вызывает их коррозию, а, реагируя с такими веществами, как хлорная известь, диоксид марганца, или перманганат калия, образует токсичный газообразный хлор.

В случае разлива соляную кислоту смывают с поверхностей большим количеством воды или щелочного раствора, который нейтрализует кислоту.

Материал подготовлен на основе информации открытых источников

Что такое соляная кислота и для чего ее используют?

Соляная кислота — это натуральный компонент желудочного сока/желудочной кислоты. Она вырабатывается клетками в желудке и играет важную роль в защите нашего организма от инфекций. (1)

Желудочный сок помогает нам расщеплять съеденную пищу, чтобы организм мог впитывать все необходимые питательные вещества и избавляться от ненужных отходов.

Соляная кислота (hydrochloric acid) вырабатывается париетальными (или секретирующими кислоту) клетками через секреторную сеть, называемую канальцами, в часть желудка, называемую просветом. Этот процесс называют «тяжелым энергетическим бременем», что означает, что он требует значительного количества энергии. (2)

Организм готов потратить много ресурсов на производство соляной кислоты из-за того, что она необходима для защиты от недостаточности питательных веществ, повышенной проницаемости кишечника, кандидоза и многого другого.

Гипохлоргидрия — это медицинский термин, означающий пониженную кислотность желудка. (3)

Полное отсутствие соляной кислоты, особенно в желудке, называется ахлоргидрией (или нулевой кислотностью желудка), которая связана с рядом серьезных нарушений здоровья, таких как хронический гастрит или карцинома желудка, пернициозная анемия, пеллагра и алкоголизм. (4)

К признакам того, что ваш организм, вероятно, вырабатывает недостаточно желудочного сока, относится потеря аппетита, ощущение сытости сразу после приема небольшого количества пищи, боль и ощущение жжения, газообразование, запор и диарея.

Причины дефицита

С чем же связана низкая выработка соляной кислоты и желудочного сока?

Низкий уровень желудочного сока — это крайне распространенная проблема среди людей, живущих в западных промышленно развитых странах. Этому способствуют следующие причины:

  • Регулярный прием антацидов для смягчения симптомов изжоги. Недавние исследования показали, что данное лекарственное средство часто маскирует нерешенные физиологические проблемы и может привести к возникновению дополнительных осложнений. (5)
  • Несбалансированное питание, большое количество полуфабрикатов в рационе.
  • Хронический стресс.
  • Прием антибиотиков и ряда других лекарственных средств.
  • Недостаток физической активности, либо чрезмерно интенсивные тренировки. (6)
  • Алкоголизм, курение и воздействие прочих токсинов.
  • Старение (по оценкам, около 30-40 процентов мужчин и женщин старше 60 лет страдают от атрофического гастрита – состояния, при котором не вырабатывается кислота, либо вырабатывается в крайне малых количествах. Среди людей старше 80 лет количество случаев данного заболевания еще выше).
  • Пищевая аллергия/непереносимость.
  • Расстройства пищевого поведения, недостаток питательных веществ или экстремальные диеты и сильное сокращение калорийности рациона. (7,8)
  • Беременность и гормональные изменения также могут привести к изменениям в выработке желудочного сока и вызвать проблемы с ЖКТ.
Читайте также:
Оксид азота - формула, свойства, получение и применение, влияние

Несмотря на то, что наш организм вырабатывает ее самостоятельно, соляная кислота также представляет собой и синтетическое химическое вещество, которое используется во многих лабораториях и промышленных условиях.

Можно выделить десятки различных применений для соляной кислоты, которая играет важную роль во многих отраслях промышленности, начиная от строительства и заканчивая производством продуктов питания.

К наиболее важным сферам применения соляной кислоты стоит отнести производство стали, чистящих средств и химических растворителей (подробнее об этом ниже).

Полезные свойства для человека

  • Способствует пищеварению и борется с изжогой/кислотным рефлюксом
  • Обладает противомикробным действием и защищает от повышенной проницаемости кишечника
  • Защищает от кандидоза
  • Поддерживает здоровье кожи
  • Способствует поглощению питательных веществ (особенно белка и витамина В12)

Способствует пищеварению и борется с изжогой/кислотным рефлюксом

Как именно соляная кислота помогает пищеварению?

В желудке соляная кислота помогает расщеплять съеденную пищу, особенно белки, и поглощать питательные вещества.

Пепсин — это пищеварительный фермент, который участвует в расщеплении белка. Однако для упрощения работы пепсина необходима соляная кислота. Кислотный желудочный сок также необходим для того, чтобы сигнализировать о выбросе желчи из печени и ферментов из поджелудочной железы. Это способствует пищеварению и абсорбции углеводов, жиров и незаменимых питательных веществ, таких как витамины А и Е.

Как понять, что организм вырабатывает недостаточно соляной кислоты и понижена кислотность желудка?

Вас может беспокоить вздутие, газы, отрыжка, изжога и кислотный рефлюкс. Это может показаться парадоксальным, но кислотный рефлюкс/изжога не всегда вызваны высокой концентрацией желудочного сока.

В некоторых случаях причиной тому может быть воспаление и даже низкий уровень желудочного сока.

Изжога возникает из-за нарушения нормальной деятельности запорного клапана, расположенного в верхней части желудка, который в обычном состоянии препятствует попаданию кислоты в пищевод. (9)

При воспалении в ЖКТ или недостаточно кислом рН желудка этот клапан перестает надлежащим образом открываться и закрываться. Когда желудочный сок достигает пищевода, возникают такие симптомы, как боль, жжение, кашель, хрипота, першение в горле, приступы удушья и прочее.

Может ли высокое содержание в желудке соляной кислоты вызвать язву или изжогу?

Соляная кислота не повреждает сам желудок, поскольку он защищен секретом, способствующим образованию толстого слоя слизи. Кроме того, в слизистой оболочке желудка содержится бикарбонат натрия, который помогает нейтрализовать действие соляной кислоты.

Изжога и язва желудка, как правило, возникают в результате дисфункции слоя слизи в желудке или запорного клапана.

Также риск развития язвы или изжоги повышается при приеме определенных лекарственных препаратов, в особенности антацидов, антигистаминных средств и ингибиторов протонной помпы (например “Омепразол”).

Все эти средства замедляют выработку кислоты в желудке. Они нейтрализуют излишки кислоты, которая уже присутствует в желудке, однако в долгосрочной перспективе это может негативно отразиться на состоянии здоровья.

Обладает противомикробным действием и защищает от повышенной проницаемости кишечника

Как соляная кислота влияет на бактерии, живущие в кишечнике?

Согласно статье, опубликованной в журнале «PLOS One»: «Внутрижелудочная кислотность, вероятно, является ключевым фактором, определяющим разнообразие и состав микробных сообществ, обнаруженных в кишечнике позвоночных». (10)

Соляная кислота помогает поддерживать в пищеварительной системе очень кислую среду, что затрудняет выживание опасных микробов. (11)

Желудочный сок выступает в роли барьера между вредоносными микроорганизмами и ЖКТ. Желудочный сок защищает нас от различных видов молочницы, грибка и бактериальных инфекций.

Некоторые исследования также предполагают, что соляная кислота помогает расщеплять пищевые аллергены на более мелкие молекулы, снижая вероятность возникновения негативной или аутоиммунной реакции. Кроме того, соляная кислота полезна для профилактики синдрома повышенной проницаемости кишечника, поскольку необходима в надлежащем количестве (вместе с пепсином) для переваривания белка.

Со временем при недостатке соляной кислоты мелкие частицы не до конца расщепляются, что может привести к повреждению слизистой оболочки кишечника, вызывая аутоиммунные реакции и широкораспространенные симптомы.

В ходе некоторых исследований ученые также обнаружили связь между низкой кислотностью желудка и повышенной концентрацией бактерии Хеликобактер пилори, которая вызывает язвенную болезнь желудка и двенадцатиперстной кишки.

Защищает от кандидоза

Разрастание грибка и дрожжевого грибка может произойти, если рН кишечника слишком щелочной или недостаточно кислый. (12)

Когда рост такого грибка выходит из-под контроля, возникает кандидоз (или молочница). Он может распространяться по кишечнику, а также на других частях тела, включая гениталии, рот и ногти на ногах.

Читайте также:
Кислород ℹ формула, строение элемента, химические и физические свойства, способы получения и применения, с какими соединениями реагирует

Симптомы этого заболевания варьируются от человека к человеку и могу включать истощение, сильную тягу к определенным продуктам, набор веса, задержку жидкости и спутанность сознания. Для борьбы с этой стойкой инфекцией необходимы хорошие здоровые бактерии и правильно функционирующая иммунная система.

Поддерживает здоровье кожи

Хотите верьте, хотите нет, но распространенные проблемы с кожей, такие как купероз, акне, экзема и дерматит связаны с низким уровнем кислотности желудка и повышенной секрецией в слизистой оболочке кишечника провоспалительных цитокинов. (13)

Как соляная кислота влияет на кожу?

Некоторые исследования выявили, что прием добавок соляной кислоты и витамина В способствует снижению симптомов воспаления кожи, таких как купероз и покраснение, у людей с низкой кислотностью желудка. Исследователи также предполагают, что существует связь между избыточным бактериальным ростом в тонкой кишке и куперозом. (14)

Избыточный бактериальный рост в тонкой кишке возникает из-за низкой кислотности желудка, поскольку такое состояние позволяет патогенным бактериям, которые в нормальном состоянии погибают в желудке, воспроизводиться в тонком кишечнике, где они выживать не должны. Это повышает воспаление, что приводит к повышенной чувствительности и раздражению кожи.

Способствует поглощению питательных веществ (особенно белка и витамина В12)

Неспособность расщеплять белковую пищу до пригодных для использования аминокислот может не только стать причиной повышенной проницаемости кишечника, но и привести к дефициту белка и широкораспространенным заболеваниям. Такое состояние может вызвать такие симптомы, как общая слабость, проблемы с настроением и здоровьем кожи, выпадение волос и многое другое.

Кроме того, соляная кислота облегчает всасывание других микронутриентов, включая витамин В12, кальций, магний, цинк, медь, железо, селен и бор. (15)

Витамин В12 нормально усваивается только в сильнокислой среде, поэтому низкая кислотность желудка может привести к дефициту витамина В12. Именно по этой причине прием ингибиторов протонной помпы связывают с повышенным риском низкого уровня витамина В12. (16)

Соляная кислота может влиять на поглощение основных минералов. Поэтому ее недостаток связывают с повышением риска остеопороза и переломов. (17)

Дозировка пищевых добавок

Бетаингидрохлорид (бетаин) – один из видов добавок, который может быть источником соляной кислоты для людей с пониженной кислотностью желудка (гипохлоргидрией). (18)

Эта добавка может быть очень полезна для многих. Однако людям с активной язвой, а также тем, кто принимает стероиды, болеутоляющие или противовоспалительные средства следует отказаться от ее приема. Также прием добавок соляной кислоты не рекомендуется беременным и кормящим грудью женщинам.

Как правило, достаточно одной 650-миллиграмовой таблетки соляной кислоты в сочетании с пепсином перед каждым приемом пищи. Вы можете добавить еще одну таблетку, когда вам необходимо усмирить неприятные симптомы.

Начните с малой дозировки – как правило, это одна капсула в день (перед самым большим приемом пищи). Для наибольшего эффекта принимать соляную кислоту с пепсином следует до еды, при этом блюдо должно содержать достаточно белка.

Побочные эффекты

К возможным побочным эффектам соляной кислоты относится:

  • Раздражение глаз, кожи и слизистых оболочек. Может стать причиной серьезных ожогов, образования язвы и рубцевания.
  • При вдыхании возможно повреждение носа и дыхательных путей. Это может привести к раздражению и воспалению носовой полости, а также к проблемам с дыханием.
  • Повреждение глаз. Иногда может быть необратимо и влиять на зрение.
  • Отек сетчатки.
  • При пероральном применения возможно раздражение слизистых оболочек, пищевода и желудка.
  • Гастрит, хронический бронхит, дерматит и фотосенсибилизация.
  • Изменение цвета эмали и эрозия зубов.

Заключение

Соляная кислота — это натуральный компонент желудочного сока/желудочной кислоты. Она вырабатывается клетками в желудке и играет важную роль в пищеварительных процессах и поддержке иммунной системы .

Она способствует пищеварению, борется с изжогой и кислотным рефлюксом , обладает противомикробным эффектом, защищает от повышенной проницаемости кишечника и молочницы, поддерживает здоровье кожи и способствует всасыванию питательных веществ.

Также соляная кислота производится синтетически для использования во многих лабораториях и промышленности. Ее применяют при производстве чистящих средств, стали, материалов для фотографии, текстиля, резины и многого другого.

Есть много причин, по которым ваш организм может вырабатывать недостаточно соляной кислоты (желудочного сока). В некоторых случаях причиной пониженной кислотности желудка может быть регулярный прием антацидов для смягчения симптомов изжоги, несбалансированное питание, большое количество полуфабрикатов в рационе, хронический стресс, частый прием антибиотиков, недостаток физической активности, алкоголизм, курение, старение, пищевая аллергия, пищевые расстройства и беременность.

Для того, чтобы организм вырабатывал правильное количество соляной кислоты (не слишком много, не слишком мало), необходимо придерживаться рациона, который не вызывает воспаление/кислотный рефлюкс; контролировать стресс; высыпаться и избегать приема ненужных лекарств/добавок, снижающих кислотность желудка.

Хотите купить добавку?

Мы рекомендуем заказывать их из iHerb. Этот магазин предлагает доставку из США более 30,000 качественных товаров по доступным ценам.

Классификация катализаторов

Существующее в настоящее время огромное количество катализаторов можно классифицировать по разным критериям: структура, состав, катализируемые процессы, агрегатное состояние и др.

По агрегатному состоянию все катализаторы можно разделить на две большие группы – гомогенные и гетерогенные (Рис. 1.9).

Рис. 1.9. Классификация катализаторов

Гомогенными называются катализаторы, находящиеся в одной фазе с реагентами.

Гетерогенными называются катализаторы, образующие отдельную фазу, не смешивающуюся с реагентами и продуктами. Как правило, это твердые катализаторы.

Каждую из подгрупп катализаторов, представленных на рисунке (1.9) можно, в свою очередь, квалифицировать по различным признакам. Особенно это касается гетерогенных катализаторов, среди которых можно выделить оксидные, кислотные, основные, однокомпонентные, многокомпонентные, металлические и т.д.

Читайте также:
Неметаллы - определение, особенности строения, свойства, получение

Массивный катализатор

(Fe при синтезе NH3

Нанесенный катализатор

(Pt на силикагеле.

Иммобилизованный катализатор

(Активный компонент химически связан с носителем.

Катиониты и аниониты)

Рис. 1.10. Классификация гетерогенных катализаторов по типу активных центров. АК – активный компонент; АЦ – активный центр.

Чаще всего гетерогенные катализаторы классифицируют по типу активных центров (рис. 1.9.) на массивные, нанесенные и иммобилизованные. На рисунке (1.10) схематично изображено строение каждой из этих групп катализаторов.

Массивный катализатор целиком состоит из активного компонента, а активные центры представляют собой доступные для реагентов атомы или группы атомов на поверхности катализатора. Примером служат гранулированный железный катализатор синтеза аммиака, и сетка из сплава платины и родия, являющаяся катализатором окисления аммиака в производстве азотной кислоты.

Нанесенные катализаторы состоят из носителя и нанесенного на его поверхность тем или иным физическим методом активного компонента. При этом носитель может быть как инертным в данном процессе, так и оказывать определенное каталитическое либо промотирующее действие. Примером служит катализатор реформинга, представляющий собой гранулы оксида алюминия с нанесенной на их поверхность металлической платиной.

Иммобилизованные катализаторы это катализаторы, в которых активный компонент химически закреплен на поверхности твердого материала (носителя). Например сульфокатиониты, представляющие собой сульфированный сополимер стирола с дивинилбензолом. Сульфокатиониты содержат -SO3H группы в ароматических фрагментах полимера (носителя) и служат кислотными катализаторами, например, в синтезе метилтретбутилового эфира.

Сравнение гомогенного и гетерогенного катализа

Гомогенные катализаторы отличаются значительно большей степенью дисперсности. Каждая молекула гомогенного катализатора является каталитическим центром, в то время как в гетерогенном катализаторе активны только доступные для реагентов центры на поверхности. Следовательно, гомогенный катализатор обладает гораздо большей активностью на единицу массы катализатора. Это позволяет использовать его в гораздо меньших концентрациях, чем гетерогенный.

Гомогенно-каталитические реакции протекают чаще всего под кинетическим контролем, так как скорость диффузии реагентов к каталитическому центру значительно выше скорости собственно химической реакции.

Так как гомогенные катализаторы – это легко идентифицируемые химические соединения, то механизмы гомогенно-каталитических реакций изучены, как правило, хорошо. Для гетерогенных же каталитических процессов представление о механизме реакций часто достаточно туманны и противоречивы.

Основным недостатком гомогенного катализа является сложность отделения катализатора от продуктов реакции и его рециркуляция. Наоборот, для гетерогенного катализа сепарация (выделение) либо не требуется вообще (в случае стационарного слоя катализатора), либо осуществляется такими простыми способами как фильтрация или центрифугирование. Для выделения гомогенных катализаторов требуются значительно более сложные (энергоемкие) процессы, такие как экстракция, ректификация или ионный обмен. Кратко сравнение достоинств и недостатков гомогенных и гетерогенных катализаторов приведено в таблице 1.1.

Идеальным выглядело бы создание катализаторов, обладающих положительными свойствами как гомогенных (высокая удельная активность и селективность), так и гетерогенных (простота сепарации) катализаторов.

В настоящее время очевидно стремление перехода от гомогенно- к гетерогенно-каталитическим процессам. В современной химической промышленности доля гомогенно-каталитических процессов составляет 10-15%.

За свою историю промышленный катализ прошел огромную эволюцию благодаря развитию инструментальных методов исследования катализаторов и механизмов каталитических реакций. Целью этих исследований является создание общей теории катализа – теории, которая бы позволяла предсказывать и создавать катализаторы для всех типов катализа – гомогенного, гетерогенного и ферментативного. Однако до сих пор этого сделать не удалось.

Сравнение гомогенных и гетерогенных катализаторов.

Катализатор, их виды и свойства

Катализатор, их виды и свойства.

Катализатор – это химическое вещество, ускоряющее реакцию, но не расходующееся в процессе реакции, и действующее повторно (неоднократно).

Катализатор (понятие и сущность):

Катализатор – это химическое вещество, ускоряющее реакцию, но не расходующееся в процессе реакции, и действующее повторно (неоднократно).

Катализаторы – это вещества, которые ускоряют химические реакции, но не входят в состав их конечных продуктов.

Катализаторы – это вещества, ускоряющие скорость химической реакции, которые могут участвовать в реакции, входить в состав промежуточных продуктов, но не входят в состав конечных продуктов реакции и после окончания реакции остаются неизменными.

Термин катализатор (от греч. katalysis – «ослабление», «разрушение») впервые ввел в 1835 г. шведский химик И. Берцелиус, который установил, что в присутствии определенных веществ скорость некоторых химических реакций существенно возрастает.

Соответственно химические реакции, протекающие в присутствии катализаторов, именуются каталитическими реакциями. А процесс, заключающийся в изменении скорости химических реакций в присутствии веществ, называемых катализаторами, именуется катализом.

Различают положительный катализ и отрицательный катализ. Положительным называют катализ, при котором скорость реакции возрастает, отрицательным (ингибированием) – при котором она убывает.

Вещества, замедляющие химическую реакцию, именуются ингибиторами. Однако ингибиторы в отличие от катализаторов могут расходоваться в процессе химической реакции.

Все химические реакции в прису тствии катализатора протекают быстрее, поскольку катализатор снижает энергию активации реакции.

В некоторых химических реакциях катализатор реагирует с одним или несколькими реагентами с образованием временного промежуточного продукта, который затем регенерирует исходный катализатор в циклическом процессе. Химическая реакция в таких случаях состоит из нескольких стадий:

X + K → XK,

Y + XK → XYK,

XYKKZ,

KZ → K + Z,

X и Y – реагенты,

Z – конечный продукт химической реакции X и Y,

При этом общее уравнение реакции записывается как:

Читайте также:
Хлорид аммония - формула, свойства, получение и применение

В современном химическом производстве часто применяют каталитические системы из нескольких катализаторов, каждый из которых ускоряет разные стадии химической реакции.

Катализатор также может увеличивать скорость одной из стадий каталитического цикла, осуществляемого другим катализатором. Здесь имеет место «катализ катализа», или катализ второго уровня.

В настоящее время многие важнейшие химические производства, такие, как получение серной кислоты, аммиака, азотной кислоты, синтетического каучука, ряда полимеров и др., проводятся в присутствии катализаторов. Согласно оценкам, для производства 90 % всех коммерчески производимых химических продуктов на той или иной стадии процесса их изготовления использовались катализаторы.

Типы и виды катализаторов:

Катализаторы, как правило, подразделяются на гомогенные и гетерогенные.

Гомогенный катализатор – это катализатор, молекулы которого диспергированы (т.е. находятся) в одной и той же фазе (обычно в газообразной или жидкой), что и молекулы реагента.

Гетерогенный катализатор – это катализатор, молекулы которого находятся не в той же фазе, что и реагенты (которые обычно представляют собой газы или жидкости, адсорбированные на поверхности твердого катализатора). Гетерогенный катализатор образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества – реагенты.

Действие гомогенного катализатора, как правило, связано с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, что приводит к снижению энергии активации химической реакции. Впоследствии промежуточные вещества регенерируют исходный катализатор.

Гетерогенные катализаторы имеют, как правило, сильно развитую твердую поверхность, для чего их распределяют на инертном носителе (силикагель, оксид алюминия, активированный уголь и др.). Их действие основано на ускорении химической реакции на своей твердой поверхности (либо на плоской открытой поверхности, либо на краях кристалла, либо вследствие сочетания этих двух факторов). Поэтому активность гетерогенного катализатора зависит от величины и свойств его поверхности.

Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.

Одни и те же химические реакции могут протекать как с гомогенными, так и с гетерогенными катализаторами. Для определенных химических реакций эффективны только определённые катализаторы.

В биохимических реакциях роль катализаторов выполняют ферменты, которые часто рассматриваются как третья – отдельная категория.

Соответственно классификации катализаторов положительный катализ подразделяют на три типа:

а) гомогенный катализ, когда реакционная смесь и катализатор находятся или в жидком или в газообразном состоянии;

б) гетерогенный катализ, когда катализатор находится в виде твердого вещества, а реагирующие соединения в виде раствора или газообразной смеси . Это наиболее распространенный тип катализа, осуществляемого, таким образом, на границе раздела двух фаз;

в) ферментативный катализ, когда катализатором служат сложные белковые образования, ускоряющие течение биологически важных реакций в организмах растительного и животного мира. Ферментативный катализ может быть как гомогенным, так и гетерогенным, но из-за специфических особенностей действия ферментов целесообразно выделение этого вида катализа в самостоятельную область.

Свойства катализаторов:

Катализаторы как вещества, ускоряющие химические реакции, обладают следующими свойствами:

– каталитической активностью. Каталитическая активность – это свойство катализатора ускорять химическую реакцию. Формально каталитическую активность можно определить как скорость каталитической реакции в данных условиях за вычетом скорости той же реакции в отсутствие катализатора или как соотношение скоростей каталитической и некаталитической реакций;

селективностью. Селективность – это способность протекания химической реакции в определённом направлении, то есть свойство получать те продукты реакции, на которые направлена химическая реакция;

– неизменностью. Неизменность означает, что после участия в химической реакции они (катализаторы) остаются химически неизменными;

– активностью. Активность катализатора в процессе реакции может понижаться вследствие воздействия на катализатор вредных примесей. К последним относятся каталитические яды и ингибиторы. Каталитические яды – это вещества, вызывающие «отравление» катализатора, т. е. снижающие его каталитическую активность или полностью прекращающие каталитическое действие. Поэтому важно в процессе реакции исключить воздействие на катализатор вредных факторов.

Другими немаловажными свойствами катализаторов являются твердость, механическая прочность, устойчивость к истиранию и дроблению, срок службы, устойчивость к отравлению каталитическими ядами, размер и форма, масса единицы объема, пористость, удельная поверхность, термостойкость и стабильность.

Каталитические системы на основе катализаторов:

Современные промышленные твердые катализаторы обычно представляют собой сложные смеси, называемые контактными массами. В состав контактных масс входят прежде всего вещества, являющиеся собственно катализаторами, а также носители и активаторы.

Активаторы (промоторы) – это вещества, добавляемые к катализатору в небольших количествах с целью улучшения его свойств, таких, как активность, селективность или стабильность, которые сами по себе могут быть неактивными для данной реакции, но значительно улучшают свойства катализатора. Поэтому деление на сложные и активированные катализаторы носит лишь ориентировочный характер.

Улучшение свойств катализатора при добавлении промотора (активатора) значительно превосходит тот эффект, который можно было бы получить в результате независимого действия самого промотора, т.к. сам промотор может и не обладать каталитической активностью.

В общем случае по своему целевому назначению промоторы могут быть разделены на две группы:

– способствующие протеканию целевой реакции, т. е. увеличивающие активность катализатора;

– подавляющие нежелательные процессы, т. е. увеличивающие селективность катализатора.

Среди промоторов первой группы различают структурообразующие и активирующие. Структурообразующие промоторы, как правило, представляют собой инертные вещества, присутствующие в катализаторе в виде мелких частиц, препятствующих спеканию частиц активной каталитической фазы, что предотвращает уменьшение активной поверхности во время работы катализатора. Активирующие промоторы могут создавать дополнительные активные центры, воздействовать на электронную структуру активной фазы и т.п.

Читайте также:
Толуол - формула, свойства, получение и применение

Носители – это прочные пористые термостойкие материалы, на которые осаждением, пропитыванием или другими методами наносят катализатор. При нанесении каталитических веществ на пористый носитель достигается их тонкое диспергирование, создаются большие удельные поверхности при размерах пор, близких к оптимальным, и увеличивается термостойкость катализатора, поскольку затруднено спекание его кристалликов, разобщенных на поверхности носителя. При таком методе нанесения достигается экономия дорогих катализаторов, например платины, палладия, серебра. Носитель, как правило, влияет на активность катализатора, таким образом, нет точной границы между понятием активатор и носитель. Наиболее часто в качестве носителей применяют оксид алюминия , силикагель, синтетические алюмосиликаты, каолин, пемзу, асбест, различные соли, уголь .

Каталитическая химия

Категории Каталитическая химия | Под редакцией сообщества: Химия

Каталитическая химия – раздел физической химии, изучающий явление катализа, методы подбора, синтеза и применения катализаторов в различных областях науки, технологии и техники.

Содержание

  1. Открытие явления катализа
  2. Общие закономерности
  3. Классификация катализаторов
  4. Катализ в промышленности
  5. Ферментативный катализ”> Ферментативный катализ
  6. Каталитическая химия для охраны окружающей среды
  7. Тенденции развития каталитической химии
  8. Рекомендуемая литература

↑Открытие явления катализа

Ещё в XV веке алхимики обнаружили, что этиловый спирт в присутствии серной кислоты, которая не расходуется, превращается в диэтиловый эфир. В 1806 г. французские учёные Н.Клеман и Ш.Дезорм открыли реакцию каталитического окисления сернистого ангидрида до серного в присутствии диоксида азота. Л.Тенар в 1813 г. установил, что аммиак при нагревании разлагается на азот и водород под влиянием некоторых металлов (железо, медь, серебро, платина). Но термин «катализ» (от греч. καταλύειν — разрушение) введён только в 1835 г. Й.Берцеллиусом, который систематизировал и обобщил все известные к этому времени сведения об ускорении химических реакций под действием катализаторов.

↑Общие закономерности

Катализ является одним из фундаментальных явлений химии и биохимии. Известно несколько десятков определений этого явления, наиболее общее дал академик А.А. Баландин (1898-1967):

«Катализ – воздействие вещества на реакцию, избирательно изменяющее её кинетику, но сохраняющее её стехиометрические и термодинамические условия; это воздействие состоит в замене одних элементарных процессов другими, циклическими, в которых участвует воздействующее вещество. Вносимое вещество называется катализатором, оно не изменяется количественно в результате реакции и не смещает равновесия».

Все каталитические реакции – самопроизвольные процессы, т.е. протекают в направлении убыли энергии Гиббса. Катализатор не смещает положения равновесия химической реакции. Вблизи от равновесия один и тот же катализатор ускоряет прямую и обратную реакцию в равной степени.

Энергия активации каталитических реакций значительно меньше, чем для тех же реакций в отсутствие катализатора. Благодаря этому обеспечивается их ускорение по сравнению с некаталитическими. Снижение энергии активации объясняется тем, что при катализе реакция протекает по новому механизму, складывающемуся из элементарных реакций с меньшими энергиями активации, чем некаталитическая.

Отметим следующие принципиально важные черты каталитических реакций:

  1. Катализатор вступает в химическое взаимодействие с реагентами. При этом образуются более реакционноспособные промежуточные частицы (комплексы, ионы, свободные радикалы), чем исходные вещества.
  2. Активные промежуточные частицы реагируют в дальнейшем таким образом, что их превращения приводят в итоге к образованию конечных продуктов и регенерации катализатора.
  3. Таким образом, каталитические реакции являются циклическими по отношению к катализатору. Первоначальное состояние катализатора регенерируется после каждого цикла промежуточных взаимодействий катализатора с реагентами.
  4. Количество катализатора в системе остается неизменным в ходе каталитической реакции. Этим он отличается от инициатора химической реакции, который расходуется в ходе реакции.
  5. Ускорение реакции в присутствии катализатора дости­гается за счет того, что максимальное значение свободной энергии, которое реагирующая система достигает при движении от начального состояния к конечному, для каталитического маршрута ниже, чем для некаталитического (рис. 1.).

Рис.1. Понижение максимального значения свободной энергии для каталитического маршрута реакции

↑Классификация катализаторов

Химики-технологи подразделяют катализаторы на два типа – гетерогенные и гомогенные. К гомогенному катализу относят процессы, в которых катализатор и реагирующие вещества находятся в одной и той же фазе – жидкой или газовой – в молекулярно-дисперсном состоянии. Гетерогенный катализ реализуется в тех случаях, когда катализатор и реагенты находятся в разных агрегатных состояниях. Чаще всего катализатор твёрдый, а реагенты находятся в газовой или жидкой фазе. Принципиальная особенность гетерогенного катализа состоит в том, что реакция происходит на поверхности твёрдого катализатора. Важно отметить, что в промышленности предпочтительны гетерогенные катализаторы, так как они позволят проводить химический процесс в непрерывном режиме, пропуская реагенты через реактор, наполненный твёрдым катализатором. Использование гомогенных катализаторов (обычно это растворы каталитически активных соединений) вынуждает технологов проводить химический процесс в периодическом режиме, включающем дополнительную стадию отделения продуктов реакции от катализатора, что не требуется в случае применения гетерогенных катализаторов.

Химики-исследователи классифицируют катализаторы по их химической природе:

металлы, оксиды, кислоты и основания, координационные соединения переходных металлов (металлокомплексные катализаторы), ферменты. Кислотно-основные, металлокомплексные и ферментативные катализаторы могут быть как гомогенными, так и гетерогенными.

Все катализаторы характеризуются тремя главными свойствами – активностью, селективностью и стабильностью действия.

Все типы катализаторов содержат так называемые активные центры – атомы, ионы или группы атомов, которые непосредственно взаимодействуют с превращающимися молекулами. Понятие об активных центрах катализаторов ввёл в науку английский учёный Г. Тейлор в 1926 г. Он установил, что только 2% поверхности платины отвечают за каталитическую активность этого металла в реакциях окисления. Если активные центры блокировать, катализатор теряет активность. Тремя годами позднее А.А. Баландин впервые предложил теорию строения активных центров гетерогенных катализаторов, которая позволила ему предсказать несколько неизвестных ранее катализаторов промышленно важных процессов.

Читайте также:
Сероводород - формула вещества, строение, свойства, получение

В 50-е годы ХХ столетия А.А.Баландин высказал мысль о том, что создание теории катализа – системы научных представлений, позволяющих предсказывать активные и селективные катализаторы промышленных химических процессов – приведёт к перевороту в материальной культуре человечества. Действительно, разработка такой теории позволила бы производить необходимые для человека сложные химические соединения из дешёвого и широко распространённого сырья (природный газ, вода, воздух, углекислый газ, каменный уголь) с минимальными затратами энергии и в одну стадию. Тогда стоимость продукции предприятий, использующих химические процессы, а это химические, нефтехимические, фармацевтические, пищевые производства, должна была бы резко понизиться.

К сожалению, создание универсальной общей теории катализа, как стало ясно ещё три-четыре десятилетия тому назад, невозможно. Катализ – слишком сложное и многоаспектное явление, каталитическая активность зависит от очень большого числа факторов, вклад которых меняется в зависимости от условий протекания процесса. Широкая распространённость каталитических реакций – а многие специалисты полагают, что некаталитических химических реакций попросту нет – ставит под сомнение возможность создания универсальной теории каталитического действия. Тем не менее, каталитические реакции безусловно подчиняются общим законам физической химии.

↑Катализ в промышленности

Доля каталитических процессов в химической промышленности в настоящее время составляет не менее 85-90%. В общем объёме мирового промышленного производства каталитические процессы дают около 20% стоимости всей продукции, а это триллионы долларов США. В неорганическом синтезе важнейшими каталитическими процессами являются производство аммиака, серной и азотной кислот. В органическом синтезе катализ используется исключительно широко: гидрогенизация жидких жиров, превращение бензола в циклогексан, нитробензола в анилин, получение мономеров реакцией дегидрирования алканов и мн. др.

Каталитические процессы являются основой нефтеперерабатывающей и нефтехимической промышленности. Гидроочистка нефтяных фракций, крекинг углеводородов, каталитический риформинг, алкилирование ароматических и олефиновых углеводородов – далеко неполный перечень таких процессов. Химическая переработка угля основана на каталитической реакции Фишера-Тропша, с помощью которой синтез-газ (смесь СО и Н2), получаемый из угля, превращают в дизельное топливо или метанол.

Катализ широко используется в промышленных процессах окисления. К наиболее крупнотоннажным относятся: окисление этилена до этиленоксида, окисление метанола в формальдегид, пропилена в акролеин и окислительный аммонолиз пропилена с получением акрилонитрила.

Перечисленные выше промышленные процессы проводят с помощью гетерогенных катализаторов – дисперсных металлов, металлов, нанесенных на твёрдые, главным образом оксидные подложки, простых и смешанных оксидов, аморфных и кристаллических алюмосиликатов (цеолитов). Вместе с тем в последние десятилетия нашли широкое применение металлокомплексные катализаторы, представляющие собой координационные металлорганические соединения, обычно используемые в растворах. С их помощью реализуют жидкофазные гомогенные процессы окисления этилена в ацетальдегид, смеси этилена и уксусной кислоты в винилацетат, карбонилирования метанола с получением уксусной кислоты и др.

Для масштабирования каталитических реакций – перехода от лабораторных реакторов к промышленным – сначала необходимо в лаборатории детально изучить кинетику реакции (см. статью « Химическая кинетика») и получить информацию о её механизме. Это трудоёмкая работа, требующая, обычно, привлечения широкого арсенала физических методов исследования (ИК- и УФ-спектроскопия, радиоспектроскопия, дифракционные методы, зондовая микроскопия, хроматография, термические методы и т.д.). Особенно сложно исследовать процессы, протекающие на поверхности гетерогенных катализаторов, поскольку информативных методов детального исследования поверхности немного (рентгенофотоэлектронная спектроскопия, атомносиловая микроскопия, спектроскопия на синхротронном излучении и некоторые другие), а применяемая для этого аппаратура зачастую уникальна. Заметим, что за установление механизма такой широко известной реакции как синтез аммиака из азота и водорода немецкий учёный Г.Эртль, посвятившей этой проблеме несколько десятилетий, получил нобелевскую премию.

Поскольку совокупность методов исследования растворов гораздо шире, чем для изучения поверхности, тонкие механизмы гомогенных каталитических реакций изучены много лучше, чем гетерогенных. Так, например, удалось в деталях установить каталитический цикл гидрирования олефинов в присутствии эффективного металлорганического катализатора комплекса Уилкинсона Rh(PPh3)3Cl (рис.2).

Рис. 2. Каталитический цикл реакции гидрирования олефинов на комплексе Уилкинсона.

↑ Ферментативный катализ”> Ферментативный катализ

Ферментативный катализ (биокатализ) – это ускорение биохимических реакций под действием белковых макромолекул, называемых ферментами или энзимами. Важнейшие особенности ферментативного катализа – эффективность и специфичность. Ферменты увеличивают скорость химического превращения субстрата по сравнению с неферментативной реакцией в 10 9 – 10 12 раз. Столь высокая эффективность обусловлена особенностями строения активного центра. Принято считать, что активный центр комплементарен (пространственное соответствует) переходному состоянию субстрата при превращении его в продукт. Благодаря этому стабилизируется переходное состояние и понижается энергия активации. Многие ферменты обладают высокой субстратной специфичностью, т.е. способностью катализировать превращение только одного или нескольких близких по структуре веществ. Специфичность обуславливается строением связывающего субстрат участка активного центра.

Ферментативный катализ – основа многих современных технологий, в частности крупномасштабных процессов получения глюкозы и фруктозы, антибиотиков, аминокислот, витаминов, а также некоторых процессов тонкого органического синтеза. Важным достоинством биокатализа является то, что он, в отличие от многих промышленных каталитических процессов, реализуется при обычном давлении и в интервале температур от комнатной до 50 о С. Это позволяет принципиально снизить затраты энергии. К сожалению, ферменты способны катализировать превращения только тех химических соединений, которые участвуют в метаболизме, поэтому биокатализ не может использоваться для синтеза чуждых живому организму веществ, а таких большинство.

Читайте также:
Калий - конфигурация, свойства, способы применения и получения

↑Каталитическая химия для охраны окружающей среды

Одним из наиболее важных компонентов глобального экологического кризиса является загрязнение атмосферы, поверхностных вод и почвы. Химическая и нефтехимическая промышленность вносят существенный, хотя и не главный вклад в это загрязнение.

Первая причина возникновения отходов в химической и смежных отраслях промышленности состоит в том, что во многих случаях сырьё имеет сложный состав и не все его компоненты можно использовать; очень часто получение целевого продукта сопровождается образованием отходов, которые не удаётся квалифицированно применить. Наиболее ярким примером такого положения дел является работа целлюлозно-бумажных комбинатов. Древесина, идущая на производство бумаги состоит из двух основных компонентов – целлюлозы и лигнина, содержание которых в сырье примерно одинаково. Если целлюлоза полностью идёт в дело, то лигнин почти не находит применения, что приводит к образованию многочисленных отвалов.

Природный газ, добываемый на многих отечественных месторождениях, содержит сероводород и сераорганические соединения. Чтобы природный газ можно было использовать как топливо или как химическое сырьё, он обязательно должен быть очищен от соединений серы. В результате скапливаются «залежи» элементной серы, объём которых составляет миллионы тонн.

Вторая причина заключается в том, что практически нет химических процессов, которые бы происходили со 100%-й селективностью. При селективности 95% – а это очень высокое значение – 5% сырья превращаются в ненужный, зачастую экологически опасный продукт. Его немного, если производительность процесса составляет десятки тонн в год, а если миллионы?

Из сказанного понятно, что главная задача каталитической химии применительно к экологическим проблемам, – разработка катализаторов, обладающих максимально высокой селективностью. Попытками решить эту задачу заняты в мире сотни лабораторий.

Главным виновником загрязнения атмосферы крупных городов (до 80% от общей величины) является автомобильный транспорт, выхлопные газы которого содержат монооксид углерода, оксиды азота, несгоревшее топливо, сажу. В последнее десятилетие получили широкое распространение нейтрализаторы выхлопных газов, действие которых основано на каталитическом превращении СО в СО2, а оксидов азота – в свободный азот. Эти устройства представляют собой трубу, внутри которой находится катализатор –

высокодисперсный благородный металл (платина, палладий, родий), нанесённый на блочную керамическую или алюминиевую подложку. Такие каталитические нейтрализаторы довольно дороги, но с их помощью при повсеместном применении уже удалось существенно повысить качество атмосферного воздуха во многих европейских городах.

Ещё одно очень важное направление экологического катализа – разработка катализаторов для так называемых топливных элементов – энергетических устройств, превращающих химическую энергию топлива (прежде всего водорода) напрямую в электрический ток. Специалисты полагают, что в обозримом будущем топливные элементы найдут широкое применение на автотранспорте. Правда, для этого сначала должны быть решены проблемы крупномасштабного получения дешёвого и чистого водорода и хранения этого газа на борту автомобиля.

↑Тенденции развития каталитической химии

Несмотря на то, что каталитическая химия сформировалась как научное направление уже более ста лет, нерешённых проблем в этой науке больше, чем решённых.

Учёные пока не умеют предсказывать каталитические свойства химических веществ; только в редких случаях им удаётся получать катализаторы, обладающие 100%-й селективностью; не решена задача замены в составе катализаторов дорогих благородных металлов на более дешёвые переходные металлы; мало известно о действии электромагнитных излучений на процесс катализа. Эти задачи являются предметом интенсивных исследований каталитиков.

Среди других актуальных направлений развития каталитической химии следует отметить мембранный катализ, когда мембрана, имеющая поры молекулярного масштаба, покрыта с одной стороны катализатором. В этом случае удаётся резко повысить селективность процесса, так как превращение претерпевает только то вещество, размер молекул которого позволяет проникнуть сквозь мембрану. Другой вариант мембранного катализа заключается в использовании в качестве мембран тонких слоёв палладия или серебра. Эти металлы при нагревании пропускают водород (Pd) или кислород (Ag). На разных поверхностях таких мембран можно проводить сопряжённые реакции, например гидрирование и дегидрирование. В результате удаётся существенно снизить температуру процесса и повысить его селективность.

В последние годы получили распространение исследования каталитических реакций в среде сверхкритических растворителей, прежде всего в среде углекислого газа, находящегося в сверхкритическом состоянии. Ожидается, что, с одной стороны, это может привести к повышению активности и селективности катализаторов, с другой – к сбережению окружающей среды, поскольку в процессе не используются органические растворители и даже вода.

Определённые надежды каталитики возлагают на использование в качестве растворителей так называемых ионных жидкостей – нелетучих и сильнополярных соединений, содержащих четвертичный катион аммония или фосфония и комплексный анион. Ионные жидкости, как и сверхкритические растворители, позволяют резко уменьшить вредные выбросы.

На химическом факультете МГУ им. М.В.Ломоносова каталитической химией занимаются на нескольких кафедрах. Это – кафедры физической химии, химии нефти и органического катализа, химической кинетики, химической энзимологии, химической технологии и новых материалов. Учёные химического факультета разрабатывают новые типы катализаторов промышленных процессов, уделяя значительное внимание металлокомплексному и ферментативному катализу как наиболее перспективным направлениям. Интенсивно изучаются новые цеолитные катализаторы нефтехимических процессов, а также новое поколение катализаторов полимеризации.

Читайте также:
Карбоновые кислоты - определение в химии, формула, свойства

↑Рекомендуемая литература

Химическая энциклопедия. М., 1990, Изд-во «Советская энциклопедия».

Эта статья еще не написана, но вы можете сделать это.

Общие сведения о катализе и катализаторах

Катализ (этот термин впервые был предложен шведским химиком Берцелиусом в 1835 г.) является исключительно эффективным методом осуществления в промышленности химических превращений. В настоящее время до 90 % всей химической продукции мира изготавливается каталитическим путем. От развития катализа в значительной степени зависит технический прогресс химической, нефтехимической, нефтеперерабатывающей и других отраслей промышленности.

Катализ — многостадийный физико-химический процесс избирательного изменения механизма и скорости термодинамически возможных химических реакций веществом-катализатором, образующим с участниками реакций промежуточные химические соединения.

Различают положительный катализ — увеличение скорости реакции под влиянием катализатора — и отрицательный катализ, приводящий к уменьшению скорости химического превращения. При положительном катализе промежуточное взаимодействие реагирующих веществ с катализатором открывает новый, энергетически более выгодный (т. е. с меньшей высотой энергетического барьера), по сравнению с термолизом, реакционный путь (маршрут). При отрицательном катализе, наоборот, подавляется (ингибируется) быстрая и энергетически более легкая стадия химического взаимодействия. Следует отметить, что под термином «катализ» подразумевают преимущественно только положительный катализ.

Важной особенностью катализа является сохранение катализатором своего состава в результате промежуточных химических взаимодействий с реагирующими веществами. Катализатор не расходуется в процессе катализа и не значится в стехиометрическом уравнении суммарной каталитической реакции. Это означает, что катализ не связан с изменением свободной энергии катализатора и, следовательно, катализатор не может влиять на термодинамическое равновесие химических реакций. Вблизи состояния равновесия катализатор в равной степени ускоряет как прямую, так и обратную реакции. При удалении от состояния равновесия это условие может и не выполняться.

То, что катализатор не участвует в стехиометрическом уравнении реакций, не означает абсолютной неизменности его состава и свойств. Под влиянием реагентов, примесей, основных и побочных продуктов реакций, циркуляции и температуры катализатор всегда претерпевает физико-химические изменения. В этой связи в промышленных каталитических процессах предусматриваются операции замены, периодической или непрерывной регенерации катализатора.

Следующей важной особенностью катализа является специфичность действия катализатора. Нельзя рассматривать каталитическую активность как универсальное свойство катализатора. Многие катализаторы проявляют каталитическую активность в отношении одной или узкой группы реакций. Для каждой реакции целесообразно использовать свой наиболее активный и селективный катализатор.

Классификация катализа и каталитических реакций. По агрегатному состоянию реагирующих веществ и катализатора различают гомогенный катализ, когда реагенты и катализатор находятся в одной фазе, и гетерогенный катализ, когда каталитическая система включает несколько фаз. В нефтепереработке гетерогенный катализ, особенно с твердым катализатором, распространен значительно больше, чем гомогенный.

По природе промежуточного химического взаимодействия реагирующих веществ и катализатора катализ принято подразделять на следующие три класса:

  1. гемолитический катализ, когда химическое взаимодействие протекает по гомолитическому механизму;
  2. гетеролитический катализ — в случае гетеролитической природы промежуточного взаимодействия;
  3. бифункциональный (сложный) катализ, включающий оба типа химического взаимодействия.

Ценность этой классификации заключается в том, что именно природа промежуточного химического взаимодействия, а не агрегатное состояние реакционной системы определяет свойства, которыми должен обладать активный катализатор. Так, при гомолитическом катализе разрыв электронных пар в реагирующем веществе обычно требует большой затраты энергии. Для того чтобы тепловой эффект, а следовательно, и энергия активации этой стадии не были бы слишком большими, одновременно с разрывом электронных пар должно протекать и образование новых электронных пар с участием неспаренных электронов катализатора.

По гомолитическому, преимущественно так называемому электронному катализу протекают реакции окислительно-восстановительного типа (такой катализ поэтому часто называют окислительно-восстановительным): гидрирования, дегидрирования, гидрогенолиза гетероорганических соединений нефти, окисления и восстановления в производстве элементной серы, паровой конверсии углеводородов в производстве водорода, гидрирования окиси углерода до метана и др.

Каталитической активностью в отношении таких реакций обладают переходные металлы (с незаполненными d– или f-оболочками) первой подгруппы (Сu, Ag) и восьмой группы (Fe, Ni, Co, Pt, Pd) периодической системы Д. И. Менделеева, их окислы и сульфиды, их смеси (молибдаты никеля, кобальта, ванадаты, вольфраматы, хроматы), а также карбонилы металлов и др.

Гетеролитический, или так называемый ионный, катализ, имеет место в каталитических реакциях крекинга, изомеризации, циклизации, алкилирования, деалкилирования, полимеризации углеводородов, дегидратации спиртов, гидратации олефинов, гидролиза и многих других химических и нефтехимических процессах.

К катализаторам ионных реакций относят жидкие и твердые кислоты и основания (по этому признаку гетеролитический катализ часто называют кислотно-основным): H2SO4, HF, HCl1, Н3РО4, HNO3, СН3СООН, AlCl3, BF3, SbF3, окислы аюминия, циркония, алюмосиликаты, цеолиты, ионообменные смолы, щелочи и др.

В техническом катализе (например, в процессах каталитического риформинга и гидрокрекинга) нашли широкое применение бифункциональные катализаторы, состоящие из носителя кислотного типа (окись алюминия, алюмосиликаты, промотированные галоидами, цеолитом и др.) с нанесенным на него металлом — катализатором гемолитических реакций (Pt, Pd, Co, Ni, Mo и др.).

Гетерогенные катализаторы. Под термином «гетерогенный катализатор» подразумевают обычно твердый катализатор, нашедший преимущественное применение в каталитических процессах химической технологии.

Гетерогенные катализаторы должны удовлетворять определенным требованиям технологии каталитического процесса, основные из которых следующие:

  1. высокая каталитическая активность;
  2. достаточно большая селективность (избирательность) в отношении целевой реакции;
  3. высокая механическая прочность к сжатию, удару и истиранию;
  4. достаточная стабильность всех свойств катализатора на протяжении его службы и способность к их восстановлению при том или ином методе регенерации;
  5. простота получения, обеспечивающая воспроизводимость всех свойств катализатора;
  6. оптимальные форма и геометрические размеры, обусловливающие гидродинамические характеристики реактора;
  7. небольшие экономические затраты на производство катализатора.
Читайте также:
Каучук это ℹ формула, физические и химические свойства, получение и применение, виды синтетического каучука, интересные факты о натуральном каучуке

Обеспечение этих требований достигается главным образом при разработке состава и способа получения катализатора.

Активность катализатора определяется удельной скоростью данной каталитической реакции, т. е. количеством продукта, образующегося в единицу времени на единицу объема катализатора или реактора.

В подавляющем большинстве случаев в присутствии данного катализатора, помимо основной реакции, протекает еще ряд побочных параллельных или последовательных реакций. Доля прореагировавших исходных веществ с образованием целевых продуктов характеризует селективность катализатора. Она зависит не только от природы катализатора, но и от параметров каталитического процесса, поэтому ее следует относить к определенным условиям проведения реакции. Селективность зависит также от термодинамического равновесия. В нефтепереработке иногда селективность условно выражают как отношение выходов целевого и побочного продуктов, например таких, как бензин/газ, бензин/кокс или бензин/газ + кокс.

Стабильность является одним из важнейших показателей качества катализатора, характеризует его способность сохранять свою активность во времени. От нее зависят стабильность работы установок, продолжительность их межремонтного пробега, технологическое оформление, расход катализатора, материальные и экономические затраты, вопросы охраны окружающей среды и технико-экономические показатели процесса и др.

В процессе длительной эксплуатации катализаторы с определенной интенсивностью претерпевают физико-химические изменения, приводящие к снижению или потере их каталитической активности (иногда селективности), т. е. катализаторы подвергаются физической и химической дезактивации.

Физическая дезактивация (спекание) катализатора происходит под воздействием высокой температуры (в некоторых каталитических процессах) и водяного пара и при его транспортировке и циркуляции. Этот процесс сопровождается снижением удельной поверхности как носителя (матрицы) катализатора, так и активного компонента (в результате рекристаллизации — коалесценции нанесенного металла с потерей дисперсности).

Химическая дезактивация катализатора обусловливается:

  1. отравлением его активных центров некоторыми содержащимися в сырье примесями, называемыми ядом (например, сернистыми соединениями в случае алюмоплатиновых катализаторов риформинга);
  2. блокировкой его активных центров углистыми отложениями (коксом) или металлоорганическими соединениями, содержащимися в нефтяном сырье.

В зависимости от того, восстанавливается или не восстанавливается каталитическая активность после регенерации катализатора, различают соответственно обратимую и необратимую дезактивации. Однако даже в случае обратимой дезактивации катализатор в конечном счете «стареет» и приходится выгружать его из реактора.

Гетерогенные катализаторы редко применяются в виде индивидуальных веществ и, как правило, содержат носитель и различные добавки, получившие название модификаторов. Цели их введения разнообразны: повышение активности катализатора (промоторы), его избирательности и стабильности, улучшение механических и структурных свойств. Фазовые и структурные модификаторы стабилизируют соответственно активную фазу и пористую структуру поверхности катализатора.

В смешанных катализаторах, где компоненты находятся в соизмеримых количествах (например, в алюмокобальт- или алюмоникельмолибденовых катализаторах процессов гидроочистки нефтяного сырья) могут образоваться новые, более активные соединения, их твердый раствор в основном компоненте или же многофазные системы, обладающие специфическим каталитическим действием. Так, Со или Ni в отдельности обладают высокой де- и гидрирующей активностью, но исключительно чувствительны к отравляющему действию сернистых соединений. Мо в отношении этой реакции малоактивен, но обладает большим сродством к сернистым соединениям. Катализаторы, в которых одновременно присутствуют Мо и Со или Ni в оптимальных соотношениях, весьма эффективны в реакциях гидрогенолиза сернистых и других гетероорганических соединений нефтяного сырья.

Не менее важна роль носителей гетерогенных катализаторов, особенно в случае дорогостоящих металлических катализаторов (Pt, Pd, Ni, Со, Ag). Подбором носителя достигаются требуемые пористая структура, удельная поверхность, механическая прочность и термостойкость. В качестве носителей используют окиси алюминия, алюмосиликаты, окиси хрома или кремния, активированный уголь, пемзу, кизельгур и другие природные и синтетические материалы. На роль носителей бифункциональных катализаторов указывалось выше.

Особый класс представляют цеолитсодержащие алюмосиликатные катализаторы крекинга нефтяного сырья. Главную роль в них играют кристаллические цеолиты, имеющие каркасную структуру с относительно большими сотообразными полостями, которые сообщаются окнами малых размеров, связывающими полости между собой. В 1 г цеолита имеется около 1020 полостей и 800 м2 поверхности, способной к ионному обмену на металлы. Цеолиты диспергируются в аморфной матрице, которая выполняет роль носителя с крупными порами и при крекинге способствует первичному распаду высокомолекулярного нефтяного сырья и тем самым готовит сырье для последующих вторичных реакций на цеолите.

Большое влияние на качество катализатора оказывает способ его получения. Поскольку каталитическая реакция протекает на поверхности, целесообразно получить катализатор с максимально развитой поверхностью с большим количеством пор. Для разных реакций оптимальными могут быть узкие или, наоборот, более широкие поры, а также их комбинации. Не менее важны форма и размер зерен катализатора — от этого зависят удельная производительность, гидравлическое сопротивление слоя катализатора и конструкция реакционных аппаратов (со стационарным, движущимся или псевдоожиженным слоем катализатора). Кроме того, сама активность единицы поверхности катализатора зависит не только от его химического состава, но и от способа его приготовления.

Теории гетерогенного катализа. В настоящее время еще нет единой и общепризнанной теории катализа. В разное время исследователями ряда стран предлагались взаимно дополняющие друг друга частные теории, базирующиеся на различных физико-химических аспектах каталитического действия. Их можно подразделить на две группы:

  1. теории, утверждающие преобладающую роль в катализе физических, прежде всего адсорбционных, свойств катализатора;
  2. теории, базирующиеся на химическом подходе к сущности каталитического действия.
Читайте также:
Кислород ℹ формула, строение элемента, химические и физические свойства, способы получения и применения, с какими соединениями реагирует

К первой группе можно отнести так называемые теории адсорбционного катализа со следующими видами адсорбции:

  • точечной (одноцентровой) адсорбцией на однородной и неоднородной поверхностях (И. Лэнгмюр, X. С. Тейлор, С. З. Рогинский, Я. Б. Зельдович, М. И. Темкин и др.);
  • многоцентровой адсорбцией (мультиплетная теория А. А. Баландина (принцип геометрического соответствия) и теория активных ансамблей Н. И. Кобозева).

Ко второй группе можно отнести:

  • ранние теории промежуточного химического соединения (Д. И. Менделеев, П. Сабатье, Н. Д. Зелинский, В. Н. Ипатьев);
  • электронную теорию катализа (Ф. Ф. Волькенштейн);
  • принцип энергетического соответствия мультиплетной теории А. А. Баландина;
  • современную физико-химическую теорию гетерогенного катализа Г. К. Борескова.

Надо отметить, что в катализе одинаково важны как физические, так и химические закономерности каталитического действия. Так, без знания химической сущности (т. е. «химизма») катализа невозможен научно обоснованный подбор типа и химического состава катализатора. А кинетическое описание каталитической реакции на данном катализаторе невозможно без знания закономерностей физических (точнее, физико-химических) процессов, протекающих на границе раздела фаз, например адсорбционных (хемосорбционных) процессов.

ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ ПРОЦЕССОВ ПЕРЕРАБОТКИ НЕФТИ И ГАЗА, С. А. Ахметов, Т. П. Сериков, И. Р. Кузеев, М. И. Баязитов, 2006

Катализаторы

Примерно 90% объема современного химического производства основано на каталитических процессах.

Катализаторы – вещества, изменяющие скорость химической реакции и не входящие в состав конечных продуктов.
См. Спецпроект Neftegaz.RU «Национальный продукт: Отечественные катализаторы».

Катализаторы обеспечивают энергетически менее затрудненные пути реакции, что позволяет эффективно использовать сырье.
Катализ – это ускорение химических реакций под действием малых количеств веществ (катализаторов), которые сами в ходе реакции не изменяются.
Они широко используются при переработке нефти, получении различных продуктов, создании новых материалов (например, пластмасс).
Примерно 90% объема современного химического производства основано на каталитических процессах.
Катализаторы позволяют превратить низкосортное сырье в высокоценные продукты.
Без катализаторов невозможно обеспечить производство моторных топлив для двигателей экологического стандарта «Евро-5» и выше.
Например, в каталитическом крекинге – одном из ключевых процессов, обеспечивающих увеличение выхода светлых нефтепродуктов (особенно бензина), самое главное действие катализатора – расщепление больших углеводородных молекул на более мелкие с высоким октановым числом.

Гидроочистка является наиболее крупнотоннажным каталитическим процессом в нефтепереработке.
В процессе гидроочистки понижается содержание серы в топливе.
Эффективность гидроочистки зависит от активности катализаторов, температурного режима и качества сырья.
И повышение эффективности процесса требует использования новых типов катализаторов.

Требования к катализаторам:

  • постоянная высокая каталитическая активность,
  • селективность,
  • механическая прочность,
  • термостойкость,
  • устойчивостью к действию каталитических ядов,
  • большая длительность работы,
  • легкая регенерируемость,
  • необходимые гидродинамические характеристики,
  • невысокая стоимость.

Активность определяется скоростью реакции, отнесенной к единице объема или массы катализатора и зависит от его хим. состава.
Формирование свойств катализатора происходит во время его приготовления и во время эксплуатации, поэтому метод приготовления катализатора должен учитывать возможность образования активных центров в условиях катализа. Во многих случаях активность промышленных катализаторов увеличивают добавлением промоторов (сокатализаторов).

Селективность изменяется из-за изменения электронных свойств и окружения активных центров катализатора (эффект лиганда).
В реакциях сложных органических молекул большое значение имеет преимущественное образование продукта, близкого по своей форме и размерам к размерам микропор катализатора.
В сложных многостадийных реакциях применяют многофазные многокомпонентные катализаторы, селективность которых выше благодаря тому, что каждая стадия сложной реакции ускоряется своим компонентом катализатора. Селективность катализатора зависит также от его пористости, размера зерен и характера их укладки.

Термостойкость катализаторов важна для первых по ходу реагента слоев катализаторов в экзотермических реакциях, когда выделение тепла может вызвать рекристаллизацию и дезактивацию катализаторов.
Для предотвращения рекристаллизации катализаторы наносят на термостойкие носители.

Устойчивость катализатора к действию ядов каталитических определяется спецификой их взаимодействия с катализатором.
Металлические катализаторы отравляются соединениями кислорода (Н2О, СО), серы (H2S, CS2 и др.), N, Р, As и другими веществами, образующими более прочную химическую связь с катализатором, чем реагирующие вещества.
На оксидные катализаторы действуют те же яды, однако оксиды более устойчивы к отравлению.
В процессах крекинга, риформинга и других реакций углеводородов катализаторы отравляются в результате покрытия их слоем кокса.
Кроме того, катализаторы могут дезактивироваться из-за механического покрытия поверхности пылью, которая вносится извне или образуется при катализе.

Приготовление катализаторов
Катализаторы с развитой удельной поверхностью распространение получил метод осаждения из водных растворов солей с последующим прокаливанием образующихся соединений.
Так получают многие оксиды металлов. При этом лучше использовать водный раствор NH3, потому что отпадает необходимость отмывки осадка от щелочных металлов.
Охлажденный катализатор дробят, просеивают и восстанавливают азотно-водородной смесью в колонне синтеза.
Для получения правильной геометрической формы зерен катализатора используют специальные формовочные машины.
Цилиндрические гранулы получают экструзией (выдавливанием) влажной массы с помощью массивного винта (шнека) через отверстия нужного диаметра, после чего разрезают полученный жгут на отдельные цилиндрики, которые
закатываются в сферические гранулы в специальных грануляторах.
Плоские цилиндрические таблетки получают прессованием сухого порошка на таблеточных машинах

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: