Спирты, классификация и применение, реакции и окисление

Урок 22. Спирты

Определение

Спирты — это производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на гидроксогруппу ОН.

Если углеводородный радикал обозначить буквой R, то в общем виде формулу молекулы спирта можно изобразить так:

У атома углерода, который соединен с гидроксогруппой, все связи должны быть простыми:

Соединения, у которых гидроксогруппа находится рядом с двойной связью, неустойчивы:

По строению углеводородного радикала спирты делят на:

в углеводородном радикале, все связи простые;

в углеводородном радикале, есть кратная связь;

  • ароматические

имеется бензольное кольцо, т. е. в углеводородном радикале есть ароматическая связь.

По числу гидроксогрупп спирты делят на:

в состав молекулы входит одна гидроксогруппа ОН;

в состав молекул входит две или более (много) гидроксогрупп.

Рассмотрим строение молекул и свойства предельных одноатомных спиртов.

Гомологический ряд, номенклатура, изомерия

Для того чтобы вывести общую формулу гомологического ряда предельных одноатомных спиртов, сравним их состав и состав алканов:

В названиях спиртов гидроксогруппа обозначается суффиксом ОЛ. Этот суффикс прибавляется к названию исходного углеводорода:

Кроме этих названий (по ИЮПАК) для простейших спиртов используют рациональные названия, которые происходят от названия радикала:

Начиная с n = 3, для спиртов возможна изомерия. Она связана с положением группы ОН в молекуле:

Вопрос. Как обозначить положение группы ОН в молекуле?

Как всегда, положение группы ОН обозначают цифрой, которая соответствует номеру атома углерода, соединённому с группой ОН. Нумерацию основной цепи начинают с того конца, к которому ближе группа ОН.

Таким образом: название спирта (1) пропанол-1; название спирта (2) пропанол-2.

Поскольку спирты называют «по радикалам», эти спирты можно назвать и так: пропиловый спирт (1) и изопропиловый спирт (2).

Задание 22.1. Составьте молекулярные формулы этих спиртов и убедитесь, что это — изомеры.

Спирты изомерны простым эфирам, в молекулах которых атом кислорода соединяет два углеродных радикала (это изомерия между разными классами веществ):

Простые эфиры — это вещества, в молекулах которых два радикала соединены атомом кислорода. Поэтому их называют, исходя из названий радикалов. Например, простой эфир (3) — это диметиловый эфир.

Задание 22.2. Составьте графическую формулу изомера пропиловых спиртов, который является простым эфиром. Назовите его.

Строение молекул

Если при помощи графической формулы показать строение молекулы этилового спирта, то легко можно увидеть, что атомы водорода в ней неравноценны:

Действительно, пять атомов водорода соединены с атомами углерода, а один — с атомом кислорода. Теория Бутлерова утверждает, что «атомы в молекуле взаимно влияют друг на друга». Поэтому можно ожидать, что этот атом водорода будет отличаться от остальных пяти. Это отличие заключается в том, что связь О–Н гораздо более полярна, чем связи С–Н. Дело в том, что атом кислорода имеет бОльшую электроотрицательность, чем атом углерода, т. е. способен сильнее смещать к себе общую пару электронов. В результате, на атомах кислорода и водорода связи О–Н появляются значительные заряды (+) и (–).

Вопрос. На каком атоме появляется (+), а на каком (–)?

Величина этих зарядов меньше единицы, но они способны притягивать к себе молекулы других реагирующих веществ, т. е. активнее участвовать в химических реакциях будут наиболее полярные связи.

Вывод. Самыми полярными связями в молекуле спирта являются связи О–Н и О–С. За счёт их разрыва происходят химические реакции (спирт функционирует). Поэтому ОHфункциональная группа спиртов.

Свойства одноатомных спиртов

Физические свойства

Поскольку в молекуле спирта появились полярные связи, он, в отличие от углеводородов, будет иметь более высокие температуры кипения и плавления (если сравнивать соединения с одинаковым числом атомов углерода). Это связано с тем, что полярные молекулы сильнее притягиваются друг к другу, и для того чтобы оторвать их друг от друга (перевести жидкость в газ), нужно затратить много энергии — дополнительно нагреть. Кроме того, между молекулами спиртов возникают водородные связи (а), которые дополнительно притягивают молекулы друг к другу. Поэтому этиловый спирт — бесцветная жидкость (а этан и диметиловый эфир — газы!) с т. кип. 78 °C. Спирт хорошо растворим в воде, так как и с молекулами воды спирт образует водородные связи (б).

Водородные связи непрочные, поэтому низшие одноатомные спирты (мало атомов углерода в молекуле) — летучие жидкости с характерным запахом.

Химические свойства

Спирты могут реагировать с натрием и другими щелочными металлами. При этом атом водорода ОН-группы замещается на атом металла:

Вопрос. Неорганические вещества какого класса способны вступать в реакции замещения с металлами, в результате чего выделяется водород?

Аналогичную реакцию дают кислоты, поэтому в этой реакции спирт проявляет кислотные свойства. Но это очень слабые свойства, так как растворы спиртов не изменяют окраску индикаторов и не реагируют с растворами щелочей.

Спирты реагируют с неорганическими кислотами:

В этой реакции отщепляется молекула воды, — значит, это реакция дегидратации. При записи таких реакций формулы исходных веществ записывайте так, чтобы функциональные группы были рядом, причём атомы водорода функциональных групп ОН «смотрели» друг на друга. Так, в результате реакции дегидратации, в которой участвуют две молекулы спирта, образуется простой эфир (дегидратация межмолекулярная):

Читайте также:
Азотная кислота - формула, свойства, способы получения

Эта реакция происходит в присутствии концентрированной серной кислоты. Если смесь спирта и концентрированной серной кислоты нагреть сильнее, то молекула воды отщепляется от одной молекулы спирта (дегидратация внутримолекулярная):

Спирты, у которых ОН-группа соединена с первым (последним) атомом углерода углеродной цепочки (первичные спирты) легко окисляются нагретым оксидом меди CuO, превращаясь в альдегиды:

При составлении этой реакции рекомендуется выделить (подчеркнуть) те атомы, которые образуют воду, и записать новую формулу без этих атомов. Спирты горят, образуя, как и углеводороды, углекислый газ и воду.

Задание 22.3. Составьте уравнение реакции горения этилового спирта.

Таким образом, для спиртов характерны реакции:

  • замещения атома водорода ОН-группы;
  • дегидратации (отщепления воды);
  • окисления.

Все эти реакции идут с участием ОН-группы функциональной группы спиртов.

Задание 22.4. Составьте уравнения таких реакций для пропанола-1 (пропилового спирта). Уравнения реакций составляйте по аналогии с вышеперечисленными.

Получение и применение спиртов (на примере этилового спирта)

Этанол и другие спирты можно получить из алкенов.

Вопрос. При помощи какой реакции можно это осуществить (при затруднении см. урок 19.3)?

Задание 22.5. Составьте уравнение этой реакции.

Полученный таким способом спирт используют в технических целях: в качестве растворителя, для получения каучука, пластмасс и др. Кроме того, спирт используют как горючее.

Пищевой и медицинский спирты получают брожением глюкозы:

В лаборатории этиловый спирт можно получить гидролизом (взаимодействием с водой) хлорэтана:

Для того чтобы эта реакция стала необратимой, используют водный раствор щёлочи.

Задание 22.6. Составьте уравнения реакций:

  1. пропен + вода;
  2. 1-хлорпропан + NaOH (водный).

Назовите полученные вещества.

Многоатомные спирты

Многоатомные спирты содержат две и более гидроксогруппы в молекуле. При этом каждый атом углерода в молекулах спиртов может соединяться только с одной гидроксогруппой ОН, в противном случае образуются неустойчивые соединения:

Задание 22.7. Составьте формулы многоатомных спиртов, в молекуле которых:

  • два атома углерода и две гидроксогруппы;
  • три атома углерода и три гидроксогруппы.

У вас получились формулы простейших многоатомных спиртов:

Вопрос. Как в названии спирта обозначить число гидроксогрупп?

Названия по IUPAC этих спиртов составляют, используя уже известные правила, т. е. к названию углеводорода добавляют суффикс ОЛ, а перед ним указывают число ОН-групп при помощи префиксов ди- или три-. Например, этиленгликоль получит название: этандиол.

Задание 22.8. Назовите по правилам IUPAC глицерин.

Вопрос. Как вы считаете, какой из спиртов будет иметь большую температуру кипения — глицерин или пропанол-1? А растворимость в воде?

Многоатомные спирты за счёт многочисленных ОН-групп образуют многочисленные водородные связи и друг с другом, и с водой. Поэтому они имеют бОльшие температуры кипения и бОльшую растворимость в воде по сравнению с соответствующими одноатомными спиртами. Так, глицерин — бесцветная, густая жидкость, без запаха; он смешивается с водой в любых соотношениях и способен поглощать влагу из воздуха. Более того, безводный глицерин может отнимать воду из живых клеток кожи, вызывая ожоги. Растворы глицерина, наоборот, смягчают кожу.

Химические свойства глицерина и других многоатомных спиртов очень похожи на свойства одноатомных спиртов: они реагируют с натрием и НСl, образуют эфиры, могут окисляться. Например, глицерин реагирует с азотной кислотой:

Нитроглицерин входит в состав сильнейшей взрывчатой смеси динамита. Его раствор используется как лекарство.

Но в химических свойствах многоатомных спиртов есть и существенные отличия. Так, они могут растворять осадок гидроксида меди II, образуя ярко-синий раствор:

Реакция происходит при обычных условиях, причём полученное соединение очень прочное: не изменяет свой цвет даже при кипячении. Одноатомные спирты такую реакцию не дают.

Вывод. Реакция растворения голубого осадка гидроксида меди II с образованием ярко-синего раствора — это качественная реакция на многоатомные спирты.

Задание 22.9. Составьте уравнения реакций этиленгликоля:

  1. с азотной кислотой;
  2. с Сu(ОН)2.

Подсказка. При составлении уравнений этих реакций записывайте формулы многоатомных спиртов так, чтобы цепочки атомов углерода располагались вертикально, а группы ОН были рядом, причём атомы водорода функциональных групп ОН «смотрели» друг на друга.

Глицерин находит широкое применение в кожевенной промышленности (смягчает кожу), используется в медицине, входит в состав невысыхающих красок. Кроме того, глицерин, точнее, остаток его молекулы входит в состав любого жира. Поэтому глицерин часто получают из природных жиров (уравнение реакции в уроке 25).

Понятие о фенолах

К фенолам относятся вещества, в молекулах которых гидроксогруппа ОН непосредственно связана с бензольным кольцом:

В этой молекуле ОН-группа и бензольное кольцо взаимно влияют друг на друга. Поэтому фенол по свойствам отличается и от спиртов, и от бензола. Рассмотрим примеры такого влияния.

Бензольное кольцо влияет на ОН-группу, делая её более полярной, чем у спиртов. Поэтому фенол, в отличие от спиртов, реагирует с растворами щелочей:

В данной реакции фенол проявляет свойства кислоты. Отсюда его второе название — карболовая кислота («карболка»). Растворы фенола изменяют окраску индикатора.

Гидроксогруппа влияет на бензольное кольцо. Фенол очень легко вступает в реакции замещения, причём, как и для толуола, реакция происходит в положениях 2, 4, 6 по отношению к гидроксогруппе:

В отличие от спиртов и бензола фенол обесцвечивает бромную воду даже при нормальных условиях. Реакция протекает аналогично предыдущей.

Читайте также:
Классификация химических реакций по веществам, тепловому эффекту

Задание 22.9. Составьте уравнение реакции фенола с бромом и сравните эту реакцию с реакцией толуола с бромом.

Фенол легко окисляется на воздухе, при этом его белые кристаллы розовеют. Фенол сильно ядовит, так как изменяет структуру и свойства белков — основу всего живого. Кроме того, попадая в воду, он окисляется растворённым в ней кислородом. В результате содержание кислорода в водоёме уменьшается, и обитатели его погибают. Для того чтобы обнаружить фенол в водоёме и любом растворе, используют качественную реакцию с FeCl3: при добавлении этого реактива к смеси, содержащей фенол, появляется фиолетовое окрашивание.

Фенол получают из производных бензола и каменноугольной смолы. В любом случае вначале исходное вещество или смесь превращают в фенолят, а затем выделяют чистый фенол при помощи кислоты:

Фенол применяют для дезинфекции и получения красителей и полимеров.

Выводы

Спирты и фенолы — это производные углеводородов, содержащие функциональную группу ОН. Для таких веществ характерны реакции замещения атома водорода в гидроксогруппе.

Спирты за счёт функциональной группы ОН образуют простые и сложные эфиры (см. урок 25), а фенолы реагируют и за счёт функциональной группы ОН, и за счёт ароматического ядра.

Химия. 10 класс

§ 24. Химические свойства, получение и применение спиртов

Химические свойства, получение и применение спиртов

Многие химические свойства спиртов определяются наличием в их молекулах гидроксильной группы, поэтому гидроксильную группу называют функциональной.

Рассмотрим химические свойства насыщенных одноатомных спиртов.

1. Взаимодействие со щелочными металлами

Если в стаканчик с этиловым спиртом поместить кусочек натрия, начнётся бурная реакция, сопровождающаяся выделением водорода:

В этой реакции происходит замещение атома водорода гидроксильной группы атомом металла.

Так же реагируют с натрием и другие спирты. Приведём уравнение реакции пропанола-1 с натрием:

При взаимодействии с активными металлами спирты проявляют кислотные свойства. Кислотные свойства спиртов выражены очень слабо (слабее, чем у воды!), поэтому спирты не изменяют окраску индикаторов, не реагируют со щелочами и могут взаимодействовать только с самыми активными металлами, например со щелочными металлами натрием и калием.

Продукты замещения атома водорода гидроксильной группы спирта атомом металла называются алкоголятами. Приведём названия некоторых алкоголятов:

Алкоголяты представляют собой твёрдые солеподобные вещества. Они разлагаются водой с образованием спирта и щёлочи:

2. Взаимодействие с галогеноводородами

Спирты взаимодействуют с галогеноводородами (HCl, HBr, HI). При этом гидроксильная группа замещается на галоген. Приведём уравнение реакции этилового спирта с бромоводородом:

Так же реагируют с галогеноводородами и другие спирты. Например, при взаимодействии пропанола-2 с хлороводородом происходит замещение гидроксильной группы и образуется 2-хлорпропан:

3. Дегидратация. Отщепление воды

При нагревании с сильными водоотнимающими средствами, такими как концентрированная серная кислота, от спиртов отщепляется молекула воды. Реакция отщепления молекулы воды называется реакцией дегидратации (§ 16).

В данных реакциях от одной молекулы спирта отщепляется одна молекула воды. Такая реакция называется внутримолекулярной дегидратацией. В результате внутримолекулярной дегидратации спиртов образуются алкены.

При менее сильном нагревании одна молекула воды может отщепляться от двух молекул спирта:

Эта реакция называется межмолекулярной дегидратацией.

В результате межмолекулярной дегидратации спиртов образуются простые эфиры. Строение простых эфиров можно выразить следующей формулой: R—O—R’ . Углеводородные радикалы в молекуле простого эфира могут быть одинаковыми или различными. Простые эфиры изомерны спиртам (§ 22).

Продукт реакции межмолекулярной дегидратации этилового спирта — диэтиловый эфир — представляет собой бесцветную жидкость со специфическим запахом и низкой температурой кипения (tкип = 35 °С). Он используется в медицинской практике для наркоза и дезинфекции кожи при проведении инъекций.

Приведём уравнение реакции межмолекулярной дегидратации метанола:

При этом образуется диметиловый эфир — газообразное при нормальных условиях вещество с температурой кипения –25 °С.

Обратите внимание, что температуры кипения простых эфиров намного ниже, чем изомерных спиртов. На рисунке 24.1 изображены шаростержневые модели молекул этанола и диметилового эфира и указаны их температуры кипения.

Этанол и диметиловый эфир являются изомерами, их молекулы имеют примерно одинаковые размеры, поэтому, казалось бы, температуры кипения должны быть близки. Тем не менее, температура кипения этанола более чем на 100° С выше температуры кипения диметилового эфира. Напомним, что высокие температуры кипения спиртов объясняются образованием водородных связей между их молекулами. Водородная связь образуется между атомом водорода гидроксильной группы одной молекулы спирта и атомом кислорода другой молекулы. Между молекулами простых эфиров водородные связи не образуются, так как в молекулах простых эфиров нет гидроксильных групп.

4. Окисление

Спирты горят при поджигании, в этом мы можем убедиться, зажигая спиртовку:

В результате образуются углекислый газ и вода. Такая реакция называется полным окислением.

Возможно и неполное окисление спиртов. Его можно осуществить следующим образом. Нагреем в пламени спиртовки медную проволоку до красного каления. При этом блестящая поверхность проволоки покроется чёрным налётом оксида меди(II) вследствие окисления меди:

После этого раскалённую проволоку быстро поместим в стакан с небольшим количеством этилового спирта. Проволока при этом опять становится блестящей (видео 24.1). Это свидетельствует о том, что из чёрного оксида меди(II) образовалась медь. То есть произошло восстановление оксида меди(II). Восстановителем является этиловый спирт. В ходе реакции он окисляется до уксусного альдегида:

Читайте также:
Сложные эфиры - формула, свойства, способы получения

Уксусный альдегид имеет яблочный запах, который ощущается при проведении описанного эксперимента.

С окислением вторичных спиртов вы можете познакомиться, перейдя по ссылке в QR-коде.

Каучук — виды, получение и применение

В наше время почти любая область жизнедеятельности предполагает применение каучука. Это производство шин, кабеля, труб, строительный и отделочный материал, его используют в обувной, медицинской и других областях промышленности. Но что же такое «каучук», каковы виды каучука и как его получают?

Еще в конце 15 века индейцы Северной Америки из сока дерева гевеи научились получать каучук, который использовали при изготовлении обуви и других вещей. При надрезе коры гевеи происходило выделение капель молочно-белого сока – латекса. Этот сок индейцы назвали «слезы дерева», что звучит как кау-учу. Отсюда и название – каучук.

Открытие Америки Христофором Колумбом способствовало распространению чудесного материала в Европу, где путем проб и ошибок впервые получили резину. С появлением автомобильной промышленности в 20 веке спрос на резину, а, значит, и на каучук стал расти. В то время стоимость изделий из каучука была очень высокой. Это связано с тем, что в год с одного дерева гевеи можно получит всего 1—2 кг каучука, а на производство, например, шин требовалось в 50 больше.

Вскоре возникла нехватка, дефицит получаемого из сока гевеи каучука (натуральный каучук). Ученые занялись поиском решений этой проблемы. И, наконец, в 20-е годы 20 века русский учёный С.В. Лебедев получил первый синтетический каучук путем полимеризации 1,3-бутадиена (дивинила) на натриевом катализаторе. Позже натриевый катализатор заменили катализатором Циглера-Натта (Al(C2H5)3∙TiCl4), что дало возможность получения полибутадиена и полиизопрена — синтетического каучука, обладающего нужными свойствами эластичности и прочности. Синтетический каучук стал настолько популярен, что к концу 20 века почти полностью вытеснил натуральный каучук.

Виды каучука

В настоящее время получают различные виды каучука. Все синтетические каучуки принято классифицировать на:

  • Каучуки общего назначения. Используются в массовом производстве таких изделий, как шины, транспортерные ленты, резиновая обувь и т.п., в которых реализуется такое свойство резины как эластичность:
  1. Бутадиеновый (СКД; СКБ)
  2. Изопреновый (СКИ)
  3. Хлоропреновый (наирит)
  4. Бутадиен-стирольный (CKC, CKMC)
  5. Этиленпропиленовый (СКЭП, СКЭПТ)
  6. Бутилкаучук (БК) и др.
  • Каучуки специального назначения.Применяеются в производстве изделий, обладающих не только эластичностью, но и стойкостью к воздействию различных агрессивных сред, тепло- и морозостойкостью и другими уникальными свойствами. Синтетических:
  1. Бутадиен-нитрильный (СКН)
  2. Полисуль­фидный (тикол)
  3. Кремнийорганический (CKT)
  4. Уретановый (СКУ)
  5. Фторосодержащий (СКФ)
  6. Винилпиридиновый, метил­винилпиридиновый (МБП) и др.

Сравнительная характеристика и область применения каучуков представлены в таблице, а получение некоторых из них описано в разделе Свойства и получение алкадиенов:

Виды и область применения каучуков:

Вулканизация каучука

Важное практическое значение имеет вулканизированный продукт – резина. Вулканизация каучука представляет собой специально обработанную смесь каучука и серы при воздействии температуры. Линейные молекулы каучука в местах двойных связей сшиваются атомами серы, образуя дисульфидные мостики.. Такой продукт имеет трехмерную структуру и обладает повышенной прочностью, эластичностью, изностойкостью и другими полезными свойствами. При массовой доле серы 1-5 % — продукт эластичный, мягкий; 30% — жесткий, твердый (эбонит).

Состав резины

  • Каучук натуральный или синтетический
  • Вулканизирующий агент – сера, тиурам , селен, перекиси, ионизирующая радиация.
  • Ускорители вулканизации — полисульфиды, оксиды свинца, магния
  • Антиоксиданты (вещества замедляющие скорость старения резины) — альдоль, неозон Д, парафин, воск)
  • Пластификаторы (вещества, улучшающие эластичность резины) — пара­фин, вазелин, стеариновую кислоту, битумы, дибутилфталат, рас­тительные масла. Их массовая доля составляет 8—30 % от массы каучука.
  • Наполнители активные и неактивные. Активные наполнители — кремнекислота, оксид цинка; неактивные наполнители — мел, тальк, барит
  • Регенерат (продукт переработки старых резиновых изделий и отходов резинового производства).
  • Красители — минеральные или органические красящие вещества.

Назначение будущего изделия, условий его эксплуатации, технических требований к нему и т.д. определяет выбор каучука и состава резиновой смеси.

Производство изделий из резины включает этапы смешения каучука с ингредиентами в смесителях, изготовления полуфабрикатов и их раскроя, сборки заготовок изделия при помощи сборочного оборудования и вулканизацию изделий в прессах, котлах, автоклавах и др.

Каучук, свойства и характеристики, получение и применение

Каучук, свойства и характеристики, получение и применение.

Каучук – это природный или синтетический продукт полимеризации некоторых диеновых углеводородов с сопряженными связями.

Каучук – что это?

Каучук – это природный или синтетический продукт полимеризации некоторых диеновых углеводородов с сопряженными связями. Их важнейшими физическими характеристиками являются эластичность (каучуки способны восстанавливать форму), электроизоляция, водо- и газонепроницаемость. Из каучуков путем вулканизации получают резины и эбониты.

Натуральный каучук, характеристики и свойства, состав:

Натуральный каучук известен с давних времен. Учеными найдены окаменелые остатки каучуконосных растений, их возраст – миллионы лет. Пятьсот лет назад, с открытием Америки, представители цивилизации узнали об этом материале. В то время индейцы бойко продавали белым людям бутылки и обувь из резины. Однако, по-настоящему востребованным каучук стал сравнительно недавно, в 30-х годах XIX столетия: Чарльз Гудьир (Charles Goodyear) в 1839 году изобретя процесс вулканизации, получил резину. Для этого он нагревал каучук с серой, при этом свойства материала только улучшились. Так была изобретена резина , с этого и началось ее широкое применение. К 1919 году на рынке уже существовало свыше сорока тысяч видов изделий с применением этого материала .

Читайте также:
Хлорид аммония - формула, свойства, получение и применение

Каучук на 91-96 % состоит из полимера изопрена и имеет следующие характеристики и свойства: плотность 910-920 кг/м 3 , морозостой­кость или температура стеклования 70 °C (т.е. он перестает быть пластичным и обретает некоторые качества, свойственные стеклу ), теплоустойчивость до 200 °C.

В большинстве жидкостей (вода, спирт, ацетон, жирные кислоты) не растворяется и в них не набухает. Набухая, постепенно растворяется в подобных себе веществах: бензине , бензоле, эфире, толуоле и других ароматических углеводородах.

Сжатие натурального каучука сопровождается поглощением, растяжение – выделением тепла.

При охлаждении каучук становится хрупким, при нагревании – размягчается. И в том и в другом процессе каучук теряет свою эластичность. Взаимодействие натурального каучука с озоном, кислородом и другими окислителями ведет к повышению хрупкости и появлению трещин. Т.е. повышается хрупкость, он «старится».

Как и большая часть полимеров, в зависимости от температуры каучук может быть в одном из трех состояний: высокоэластичном, вязкотекучем и стеклообразном. При обычных температурных условиях каучук высокоэластичен.

Более прочего каучук ценится вследствие своей эластичности. Изделия из него способны быстро возвращать себе первоначальную форму. Это происходит каждый раз, как только перестают действовать деформационные силы. Упругость каучука одна из самых лучших в своем классе. Например, если изделие из него будут растягивать до 1000%, оно все равно вернется в свою исходную форму. К слову, для обычных твердых тел эта цифра равна 1%. Эти уникальные свойства каучук сохраняет и при нагревании, и при охлаждении.

Кроме того, преимущество каучука проявляется еще и в том, что он обладает высокой пластичностью. Это означает, что под воздействием внешних сил этот материал будет приобретать и сохранять приданную ему форму. Во время механической обработки или нагревания это свойство особо заметно. Таким образом, каучук считается пласто-эластическим веществом.

Однако, у натурального каучука имеется недостаток: со временем он твердеет и вследствие этого теряет свои свойства.

Где содержится? Получение натурального каучука:

Для природных каучуков сырьевым источником служит млечный сок некоторых растений , выделяющих латекс (белая жидкость с особыми свойствами). Сам латекс является довольно распространенным компонентом растений и встречается у представителей каучуконосных растений разных ботанических групп.

Находится он в разных частях растений . Поэтому их (т.е. растения) классифицируют следующим образом:

1. латексные, когда вещество накапливается в млечном соке,

2. хлоренхимные – вещество накапливается в молодых зеленых побегах и листьях,

3. паренхимные – вещество накапливается в корнях и стеблях,

4. травянистые латексные растения семейства сложноцветных – это кок-сагыз, крым-сагыз и другие, где каучук в небольшом количестве накапливается в подземных органах. Эти растения не используются в промышленном производстве каучука.

Каучуконосные деревья растут в основном в зоне экватора, не удаляясь от него больше, чем 10° на север и юг, т. е. это пояс шириной 1300 км и его так и называют: «каучуковый пояс». Именно здесь выращивают каучуконосные деревья для промышленного применения в мировом масштабе. В основном натуральный каучук получают из латекса тропического дерева гевеи бразильской. Для этого на коре дерева , достигшего 5-летнего возраста, делают V-образные надрезы. С одного дерева гевеи получают в среднем 2-3 кг каучука.

Чтобы получился каучук, добытый из гевеи бразильской, млечный сок (латекс) подвергают процессу свертывания или желатинирования, добавляя в него уксусную или муравьиную кислоту, после промывают водой, прокатывают в листы и коптят.

Химическое строение натурального каучука и его состав. Формула каучука:

Натуральный каучук является полимерным ненасыщенный углеводородом , имеющим большое количество двойных связей. Его универсальная химическая формула выглядит так: (C5H8)n, где степень полимеризации (n) составляет 1000-3000 единиц. Мономер натурального каучука называется изопреном.

При химическом анализе природного каучука видно, что он состоит только из углерода и водорода. Это позволяет отнести его к углеводородам. Подтверждением этому есть первичная формула каучука. Молекулярная масса отдельных единиц может превышать полумиллион грамм на моль. Таким образом, натуральный каучук является природным полимером изопрена, а точнее цис-1,4-полиизопрена.

Если представить молекулу каучука не атомарно тонкой, ее можно было бы разглядеть в микроскоп, вследствие того, что она очень длинная. А если ее еще и максимально растянуть, то получится большая зигзагоподобная линия . Это обусловлено типом углеродных связей.

По причине того, что в изопрене чередуются одинарные и двойные связи, части молекулы могут вращаться только вокруг одинарных связей. И в результате подобных колебаний молекула постоянно изгибается, и даже в состоянии покоя у нее сближены концы.

Молекулы натурального каучука похожи на почти круглые пружины , что позволяет им легко и сильно растягиваться и увеличиваться в размерах при разведении концов.

Типы и виды натурального каучука:

Натуральный каучук делят на 8 типов, образующих 35 сортов.

Самым распространенным и ценным типом нату­рального каучука считается «смокед-шит», что означает копченый лист. Он изготавливается в виде достаточно прозрачных листов цвета янтаря с рифленой поверхностью.

Читайте также:
Арены - определение, общая формула, свойства, применение

Меньше распространен тип называемый «светлый креп». Для его получения к латексу перед желатинировани­ем добавляют для отбеливания бисульфит натрия. Листы этого типа каучука имеют кремовый оттенок, они непрозрачны.

Меньше всего ценится тип, который называют «пара-каучук». Его добывают из дикорастущей гевеи кустарным способом.

Синтетический каучук, виды, его свойства, получение, производство и синтез:

В XX веке с появлением автомобильной промышленности стал расти спрос на резину, значит и на каучук. Поэтому на каучук, получаемый из сока гевеи, появился дефицит. Встал вопрос получения синтетического каучука. В 1927 году советский ученый С.В. Лебедев получил первый синтетический дивиниловый каучук с помощью реакции полимеризации 1,3-бутадиена при помощи натриевого катализатора. Теперь он стал настолько популярным, что почти вытеснил собой натуральный каучук. Синтетический каучук разделяют на более чем 30 типов, которые образуют свыше 220 марок.

В настоящее время в России выпускается синтетический каучук специального и общего назначения. Кроме того, синтетический каучук подразделяют на стереорегулярный и нестереорегулярный. Стереорегулярный, более прочный и износостойкий, чем натуральный каучук. Он применяется, например, как исходный материал для автомобильных покрышек. Нестереорегулярный – используют в производстве эбонита и резины, более стойкой к воздействию агрессивных сред.

Синтетическими каучуками общего назначения считаются:

  1. 1. бутадиеновый каучук,
  2. 2. изопреновый каучук,
  3. 3. бутадиен-стирольный каучук,
  4. 4. бутил-каучук,
  5. 5. этилен-пропилено­вый каучук,
  6. 6. хлоропреновый (наирит)каучук и пр.

Синтетическими каучукам специального назначения являются:

  1. 1. бутадиен-нитрильный каучук,
  2. 2. кремнийорганический каучук,
  3. 3. уретановый СКУ,
  4. 4. полисуль­фидный каучук,
  5. 5. фторосодержащий каучук,
  6. 6. метил­винилпиридиновый каучук,
  7. 7. силоксановыйкаучук и т.д.

Ученые постоянно занимаются синтезом искусственных каучуков, которые по своим качествам представляют собой более совершенный материал, чем природные. Например, по своим свойствам замечательными веществами являются сополимеры стирола, бутадиена и акрилонитрила. Во время процесса полимеризации их цепочка строится чередованием бутадиена с соответствующим другим мономером. Это позволяет достигать отличных свойств, которых нет у классических каучуков.

В России сейчас изготавливают классический синтетический каучук, свойства которого схожи со свойствами натурального вещества. При вулканизации такого каучука получается резина, прочность, эластичность и пластичность которой практически не отличается от подобных, свойственных природному материалу.

Применение натурального и синтетического каучука. Вулканизация каучука:

Основным применением и натурального, и синтетического каучука является производство резины.

Резина является продуктом вулканизации каучука с наполнителем, в качестве которого выступает сажа. Вулканизация каучуку необходима по той причине, что каучук в чистом виде достаточно хрупкий и менее эластичный материал , чем вулканизированный. При вулканизации каучука происходит обработка смеси каучука и серы под воздействием температуры. Сутью вулканизации является процесс, при котором атомы серы присоединяются к нитевидным линейным молекулам каучука в местах двойных связей и как бы сшивают дисульфидными мостиками эти молекулы между собой, образуя при этом трехмерный сетчатый полимер.

Если для вулканизации каучука берётся 2-3 % серы от общей массы, то продуктом вулканизации явится резина. Она менее подвержена колебанию температуры, механическому разрушению, воздействию газов и электрического тока, действию разных химических реагентов и летней жары, чем каучук. Вдобавок, у вулканизированного каучука получается высокая степень трения скольжения по сухой поверхности и небольшая по влажной.

Если к каучуку добавить более, чем 30 % серы, то в процессе вулканизации получится эбонит: твердый материал, не обладающий пластичностью.

Каучук это ℹ️ формула, физические и химические свойства, получение и применение, виды синтетического каучука, интересные факты о натуральном каучуке

Синтетический каучук – диэлектрик, который широко применяют для создания изоляторов силового и слаботочного оборудования, обладающие гибкостью, прочностью, и повышенной стойкость к истиранию.

Производство синтетического каучука

Синтетический каучук в промышленном масштабе производится методами растворной или эмульсионной полимеризации. Полимеры, изготовленные в растворе, обычно имеют больше линейных молекул (то есть меньше разветвлений боковых цепей от основной цепи полимера), а также более узкое распределение молекулярного веса (то есть, большую длину) и обладают хорошей текучестью. Кроме того, размещение мономерных звеньев в молекуле полимера может контролироваться более точно, когда полимеризация проводится в растворе. Мономер или мономеры растворяют в углеводородном растворителе, обычно в гексане или циклогексане, и полимеризуют, используя металлоорганический катализатор, такой как бутиллитий.

При эмульсионной полимеризации мономер (или мономеры) эмульгируется в воде с подходящим мылом (например, стеарат натрия), применяемым в качестве поверхностно-активного вещества, и добавляется водорастворимый свободнорадикальный катализатор (например, персульфат калия, пероксиды, окислительно-восстановительная система), чтобы вызвать полимеризацию. После того как полимеризация достигнет желаемого уровня, реакцию останавливают добавлением ингибитора радикалов. Около 10 процентов синтетического эластомера, получаемого эмульсионным методом, продается в виде латекса. Остаток коагулируют с подкисленным соляным раствором, промывают, сушат и прессуют в брикеты весом 35 кг.

К примеру, когда проводится «горячая» эмульсионная полимеризация SBR (при 50 °C) — молекулы полимера более разветвлены, а когда проводят «холодную» полимеризацию (при 5 °C ) — они более линейны и, как правило, имеют более высокую молекулярную массу, которая придает свойства, улучшающие сопротивление истиранию и износостойкость шин. В некоторых случаях полимеризация продолжается для того, чтобы получить продукты с такой высокой молекулярной массой, которая сделала бы связи трудноразрушимыми. В этих случаях перед коагуляцией добавляют около 30 процентов тяжелой нефти, чтобы получить «растянутые маслом» эластомеры с превосходной износостойкостью.

Читайте также:
Полимеры ℹ классификация, виды и свойства, структура и строение, способы получения и применения, реакции, примеры высокомолекулярных соединений

Введение

На самом деле, к промышленному производству синтетического сырья ученые и производственники шли порядка ста лет. Каучук был синтезирован во второй половине XIX века. Но технология производства, необходимое оборудование разработали только в ХХ веке. Все необходимое для производства синтетического каучука было представлено С.В. Лебедевым, российским ученым.

С тех пор, ученые – химики, производственники приложили немало сил для совершенствования этого сырья, разработки новых марок этого сырья и пр.

Синтетические каучуки

Данные продуктынефтеперерабатывающей промышленности также относятся к полимерным материалам,хотя имеют мало общего с предыдущими веществами. Главное физическое отличиесинтетических каучуков от остальной группы полимеров заключается в том, что онине термопластичны. Их относят к группе эластомеров, то есть веществ, которые всвоем нормальном состоянии способны деформироваться под действием нагрузки. Послетого, как давление прекращается, они возвращаются в первичную форму. В миресуществует альтернатива данным веществам. Называется она природными каучуками ипроизводится из сока дерева гевея. Масштабов производства натуральногоматериала недостаточно для того, чтобы удовлетворить потребности рынка.Особенно ярко это было продемонстрировано во время Второй мировой войны, когдабольшая часть плантаций гевеи находилась под контролем Японии. Это сталотолчком к развитию данного направления нефтехимии в Западных странах. Насегодняшний день синтетические материалы занимают практически 65% всего рынкакаучуков.

В качестве мономеров каучуковыхцепочек выступают вещества, сопряженные диены. Их отличие в том, что они имеютдве двойные связи между атомами углерода. Самым востребованным из них являетсядивинил (1,3-бутадиен):

Вторым по важности мономеромявляется изопрен – вещество, которое очень близко к дивинилу, но имеет на одинатом углерода больше:

Интересной особенностью реакцииполимеризации является то, что между 2 и 3 атомом молекулы образуется двойнаясвязь, в то время как между 1 и 4 – одинарная:

Благодаря таким двойным связям, материалимеет повышенную эластичность, которая характерна только для этого родаполимеров.

Стоит также понимать, что междуисходными каучуками и готовой резиной есть очень большая разница. Резиныпроизводятся на основе каучука в процессе вулканизации. При термическойобработке с добавлением специального ингредиента (вулканизатора) отдельныемолекулярные цепочки переориентируются в поперечном направлении, что придаетматериалу большей прочности. Чаще всего дополнительным элементом выступаетсера.

Природные каучуконосы

Слово «каучук» происходит от двух слов языка тупи-гуарани: «кау» — дерево, «учу» — течь, плакать. «Каучу» — сок гевеи, первого и самого главного каучуконоса. Европейцы прибавили к этому слову всего одну букву. Среди травянистых растений России есть всем знакомые одуванчик, полынь и молочай, которые тоже содержат млечный сок.

Промышленное значение имеют латексные деревья, которые не только накапливают каучук в большом количестве, но и легко его отдают; из них наиважнейшее — гевея бразильская (Hevea brasiliensis), дающая по разным оценкам от 90 до 96% мирового производства натурального каучука.

Сырой каучук из других растительных источников обычно засорён примесями смол, которые должны быть удалены. Такие сырые каучуки содержат гуттаперчу — продукт некоторых тропических деревьев семейства сапотовых (Sapotaceae).

Каучуконосы лучше всего произрастают не далее 10° от экватора на север и юг. Поэтому эта полоса шириной 1300 километров по обе стороны от экватора известна как «каучуковый пояс». Здесь каучук добывается и поступает для продажи во все страны мира.

Физические и химические свойства натурального каучука

Натуральный каучук — аморфное, способное кристаллизоваться твёрдое тело.

Природный необработанный (сырой) каучук — белый или бесцветный углеводород.

Он не набухает и не растворяется в воде, спирте, ацетоне и ряде других жидкостей. Набухая и, затем, растворяясь в жирных и ароматических углеводородах (бензине, бензоле, эфире и других) и их производных, каучук образует коллоидные растворы, широко используемые в технике.

Натуральный каучук однороден по своей молекулярной структуре, отличается высокими физическими свойствами, а также технологическими, то есть, способностью обрабатываться на оборудовании заводов резиновой промышленности.

Особенно важным и специфическим свойством каучука является его эластичность (упругость) — способность каучука восстанавливать свою первоначальную форму после прекращения действия сил, вызвавших деформацию. Каучук — высокоэластичный продукт, обладает при действии даже малых усилий обратимой деформацией растяжения до 1000%, а у обычных твёрдых тел эта величина не превышает 1%. Эластичность каучука сохраняется в широких температурных пределах, и это является характерным его свойством. Но при долгом хранении каучук твердеет.

При температуре жидкого воздуха –195°C он жёсткий и прозрачный; от 0 ° до 10 °C — хрупкий и уже непрозрачный, а при 20 °C — мягкий, упругий и полупрозрачный. При нагреве свыше 50 °C он становится пластичным и липким; при температуре 80 °C натуральный каучук теряет эластичность; при 120 °C — превращается в смолоподобную жидкость, после застывания которой уже невозможно получить первоначальный продукт. Если поднять температуру до 200—250 °C, то каучук разлагается с образованием ряда газообразных и жидких продуктов.

Каучук — хороший диэлектрик, он имеет низкую водо- и газопроницаемость. Каучук не растворяется в воде, щёлочи и слабых кислотах; в этиловом спирте его растворимость небольшая, а в сероуглероде, хлороформе и бензине он сначала набухает, а уж затем растворяется. Легко окисляется химическими окислителями, медленно — кислородом воздуха. Теплопроводность каучука в 100 раз меньше теплопроводности стали.

Читайте также:
Что такое ph в химии ℹ как рассчитать водородный показатель, как определить показатель ph раствора, шкала кислотности среды

Наряду с эластичностью, каучук ещё и пластичен — он сохраняет форму, приобретённую под действием внешних сил. Пластичность каучука, проявляющаяся при нагревании и механической обработке, является одним из отличительных свойств каучука. Так как каучуку присущи эластические и пластические свойства, то его часто называют пласто-эластическим материалом.

При охлаждении или растяжении натурального каучука наблюдается переход его из аморфного в кристаллическое состояние (кристаллизация). Процесс происходит не мгновенно, а во времени. При этом в случае растяжения каучук нагревается за счёт выделяющейся теплоты кристаллизации. Кристаллы каучука очень малы, они лишены чётких граней и определённой геометрической формы.

При температуре около –70 °C каучук полностью теряет эластичность и превращается в стеклообразную массу.

Вообще все каучуки, как и многие полимерные материалы, могут находиться в трёх физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. Высокоэластическое состояние для каучука наиболее типично.

Каучук легко вступает в химические реакции с целым рядом веществ: кислородом (O2), водородом (H2), галогенами (Cl2, Br2), серой (S) и другими. Эта высокая реакционная способность каучука объясняется его ненасыщенной химической природой. Особенно хорошо реакции проходят в растворах каучука, в которых каучук находится в виде молекул сравнительно крупных коллоидных частиц.

Почти все химические реакции приводят к изменению физических и химических свойств каучука: растворимости, прочности, эластичности и других. Кислород и, особенно, озон, окисляют каучук уже при комнатной температуре. Внедряясь в сложные и большие молекулы каучука, молекулы кислорода разрывают их на более мелкие, и каучук, деструктурируясь, становится хрупким и теряет свои ценные технические свойства. Процесс окисления лежит также в основе одного из превращений каучука — перехода его из твёрдого в пластичное состояние.

Производство синтетического каучука

Повышенный спрос на полимерное вещество привел к организации целых отраслей, задействованных на производство сырья. Каучуки разделяют по общему и специальному назначению. Материалы из первого подразделения идут на выпуск продукции, где необходима эластичность при обычной температуре. Специальные каучуки выпускают для изделий с экстремальным назначением, на которые будет воздействовать мороз, огонь, озон и кислород.

Казанский завод синтетического каучука

Позднее, на основе реакции Лебедева был построен и запущен завод Синтетического Каучука в г.Казани.

История Казанского завода Синтетического Каучука — одна из славных страниц развития индустриальной России. К концу 30-х годов в стране уже работали 3 завода СК, Казанский стал четвертым. Он так и назывался СК — 4. До пуска крупных нефтехимических производств, давших каучук из нефтепродуктов было еще далеко. И заводы СК оставались единственными поставщиками стратегически важных продуктов. В годы Великой Отечественной войны синтетический каучук шел на изготовление боевой техники, позже заводы СК активно участвовали в восстановлении разрушенной войной экономики, способствовали ускорению технического прогресса в 50 — 60-е годы.
Закладка фундамента завода СК — 4 была произведена в 1931 году. С 1935 года название предприятия — «Завод СК им. Кирова». В эксплуатацию завод был пущен в 17 ноября 1936 году, в мае 1939 года на заводе был получен самый дешевый каучук в мире. В 1940 году завершена полная реконструкция завода, позволившая увеличить мощность в 3,5 раза. В 1949 году запущено производство латекса, каучука ДА, введена в производство серия уникальных каучуков специального назначения, определяющая лицо завода и по сегодняшний день.

Формула строения

Каждый вид синтетического каучука имеет свою химическую формулу

Молекулы изопрена CH2=C(CH3)-CH=CH2 2-метилбутадиен-1,3;

бутадиеновый CH2=CH-CH=CH2 бутадиен-1,3;

дивиниловый CH2=CH-CH=CH2 бутадиен-1,3

Хлоропреновый CH2=C(Cl)-CH=CH2 2-хлорбутадиен-1,3

Бутадиен-стирольный состоит из молекул CH2=CH-CH=CH2 бутадиен-1,3 и C6H5- CH=CH2 стирол

Типы и виды натурального каучука:

Натуральный каучук делят на 8 типов, образующих 35 сортов.

Самым распространенным и ценным типом нату­рального каучука считается «смокед-шит», что означает копченый лист. Он изготавливается в виде достаточно прозрачных листов цвета янтаря с рифленой поверхностью.

Меньше распространен тип называемый «светлый креп». Для его получения к латексу перед желатинировани­ем добавляют для отбеливания бисульфит натрия. Листы этого типа каучука имеют кремовый оттенок, они непрозрачны.

Меньше всего ценится тип, который называют «пара-каучук». Его добывают из дикорастущей гевеи кустарным способом.

Синтетический каучук — типы и использование

Как упоминалось выше, существует несколько основных видов синтетического каучука. Тип каучука подбирается в зависимости от условий эксплуатации и необходимых физико-химических свойств готового изделия. Вот основные типы синтетических каучуков и краткое описание их областей применения.

Стирол-бутадиен-каучук (SBR): резина общего назначения, обладающая лучшей стойкостью к истиранию, плохим сопротивлением низким температурам, низкой эластичностью, хорошей стойкостью к старению и нагреву, отличный электроизоляционный материал. Используется в шинной промышленности, для производства конвейерных лент, уплотнений, резинотехнических изделий.

Полибутадиеновый каучук (BR): этот синтетический каучук не используется сам по себе. Он смешивается с SBR или NR. Он гибок при низких температурах и обладает хорошей эластичностью. Используется в шинах, сцеплениях, подшипниках двигателя, конвейерных лентах, резинотехнических изделиях, уплотнениях для питьевой воды.

Изопреновый каучук (IR): это более однородный, чистый, прозрачный каучук. Используется в технических изделиях, таких как строительные секции, нагревательные шланги, охлаждающие шланги для транспортных средств, высокопроизводительные шины, посуда для пищевых продуктов.

Читайте также:
Пероксид водорода - формула, свойства, способы получения

Акрилонитрил-бутадиеновый каучук (NBR): этот синтетический каучук обладает устойчивостью к топливу и маслу, хорошими температурными свойствами и стойкостью к истиранию. Используется в автомобильных деталях, масляных шлангах, резинотехнических изделиях, ковриках, плитах, уплотнениях, роликах и для пищевых продуктов, таких как молоко.

Хлоропреновый каучук (CR): устойчив к смазке, маслам, старению, истиранию и атмосферным воздействиям, обладает огнестойкостью. Используется в конвейерных лентах, приводных ремнях, сцеплениях, всех видах резинотехнических изделий, тросах, пневматических подвесных системах.

Бутилкаучук (IIR): этот синтетический каучук устойчив к старению, озону и химическим веществам. Обладает хорошими механическими и изоляционными свойствами. Обладает низкой проницаемостью для газов и износостойкостью. Используется в автомобильных шлангах, уплотнениях, мембранах, покрышках, резинотканевых изделиях, шлангах, изоляции кабелей.

Завод резинотехнических изделий «Каучук» имеет опыт работы с большим количеством каучуков в производстве изделий, а также производит собственные резиновые смеси на основе всех видов каучуков. Наши опытные инженеры-технологи могут подобрать для вас рецептуру резиновой смеси, которая будет отвечать всем вашим требованиям и поможет вам создать изделие, которое даст вам преимущество в условиях рыночной конкуренции. Обращайтесь за консультацией по контактам на сайте.

Виды синтетического каучука

Использование каучуков многопрофильное. Производители опираются на особенности каждого вида, созданного изобретателями. К основным относятся синтетические каучуки:

  • изопреновые;
  • бутадиеновые;
  • бутадиен-метилстирольные;
  • бутилкаучуки;
  • этиленпропиленовые;
  • бутадиен-нитрильные;
  • хлоропреновые;
  • силоксановые;
  • фторкаучуки;
  • тиоколы.

Изопреновый каучук создали в процессе полимеризации изопрена с катализатором. Вещество клейкое и эластичное.

Продукты, в состав которых входят гетератомы стойкие к растворителям, топливу, маслам. Но в них снижены механические свойства.

В массовом производстве большее применение нашли каучуки с содержанием хлорбутадиенов. Тиоколы используют в ограниченных масштабах.

Интересно, что автомобильная промышленность воодушевила ученых на изобретение искусственного каучука. Сока дерева гевеи было недостаточно, чтобы удовлетворить потребности резины. Сейчас популярность синтетического средства вытеснило натуральный продукт, уступающий по многим показателям. В настоящее время существует примерно 30 видов материала, которые разделяются на 220 марок.

Каучук: свойства, виды, применение

В составе млечного сока некоторых растений содержится латекс. Именно на основе этой белой жидкости и создается каучук. Данный материал обладает эластичностью, он не проницаем для воды и не проводит электрический ток. Сегодня производится не только натуральный каучук, но и его разнообразные синтетические аналоги. Все они сырье для изготовления изоляционных материалов, обуви и одежды, шин.

Каучук: история открытия

Если бы мы могли спросить, что такое каучук, у индейцев, то они бы ответили, что это слезы деревьев. Именно так дословно переводится данный термин с древнего языка тупи-гуарани. До открытия Америки европейцы о таком чудесном материале ничего не слышали. В Новом Свете они впервые увидели мячи, обувь и прочие изделия из эластичного и прочного материала.

Фетр: что это за материал, виды, применение

Всё дело в том, что уникальное каучуковое дерево — источник каучука — произрастает только на экваторе, в небольшом поясе в 1500 км шириной. В так называемой гевее бразильской содержится много латекса, и она легко отдает его человеку.

В наших широтах похожим млечным соком обладают одуванчики, молочай и полынь. Однако ни его количество, ни качество не позволяют производить из него каучуки. Вот почему только древним народам американского континента этот материал оказался отлично знаком, а история открытия каучука связана с эпохой географических открытий.

Вскоре предприимчивые европейцы научились выращивать гевею в промышленных масштабах и распространили уникальное сырье по всему миру. Более того, в 1839 году на основе каучука была синтезирована резина. Ученый Чарльз Гудьир попробовал нагревать его с серой и получил еще более прочный и удобный материал. Процесс назвали вулканизацией, а резиновые изделия быстро покорили планету.

Что такое экокожа и какие модные тренды с ней связаны

Каучук: свойства

Какими качествами наделен природный каучук? Этот полимер абсолютно уникален и меняет свои свойства в зависимости от температуры окружающей среды. Он может быть и высокоэластичным, и текучим, и даже стеклообразным.

В диапазоне от 20 до 30 °С для материала характерны:

  • белая окраска или отсутствие цвета;
  • аморфная рыхлая структура;
  • способность растворяться только в бензине, бензоле, эфире;
  • нерастворимость в воде и спиртах.

Среди важных свойств каучука следует отметить:

  • упругость и эластичность. Каучуковое изделие можно растянуть на 1000%, и даже после этого оно быстро возвращается в исходное состояние. Данное качество теряется только при очень длительном хранении;
  • мягкость при комнатной температуре и проявление пластичности при нагревании. Если подобрать правильные условия работы с материалом, то форму, полученную при его тепловой обработке, удастся сохранить;
  • непроницаемость для электричества, тепла, газов и воды. Это свойство делает применение каучука очень удобным во всех сферах. Изготовленные из него изделия обладают длительным сроком хранения и мало подвержены воздействиям окружающей среды.

Как варить какао на молоке: проверенный рецепт

Вот почему ни один из известных ранее материалов не смог сравниться с каучуком и тем более конкурировать с ним.

Каучук: виды и применение

Два основных вида данного материала — это природный и синтетический каучук. Последний в свою очередь сегодня представлен широким разнообразием подвидов. Всё дело в том, что не так-то просто выращивать специальные деревья и добывать их млечный сок. На это также требуется много времени. Поэтому с момента знакомства с каучуком ученые начали искать способы производства его искусственных заменителей.

Читайте также:
Бензол - свойства вещества, формула, характеристика, состав

Первой молекулой, на основе которой ученым удалось создать синтетический аналог каучука, стал 1,3-бутадиен. Полученный дивиниловый каучук по свойствам оказался очень похож на натуральный. Резина, полученная после его вулканизации, также была прочной, пластичной и эластичной. Из нее начали изготавливать обувь, шины, ленты для конвейеров и медицинские изделия.

Эвкалипт: полезные свойства, применение в медицине

По аналогичному принципу ученые разработали также бутадиен-стирольный, бутадиен-нитрильный, винилпиридиновый и изопреновый каучук. Свойства каждого нового полимера несколько отличались и позволяли расширить области их применения.

Далее ассортимент каучуков расширился за счет введения в структуру молекул новых фрагментов, а именно появился:

  • кремнийорганический каучук. Из него изготавливают трубки для переливания крови, искусственные сердечные клапаны, а также кабель и провода;
  • полиуретановый каучук. Необходим для получения износостойкой резины;
  • фторсодержащий каучук. В отличие от природного аналога не разрушается даже при температуре выше 200 °C;
  • хлоропреновый каучук. Устойчив к действию окислителей и большинства растворителей.

Также сегодня известны неорганический, вспененный каучук и многие другие виды.

Что касается применения, то синтетические каучуки, наряду с натуральными, широко используются в производстве резины. Последняя важна в изготовлении обуви и одежды, искусственной кожи, медицинских изделий, военных деталей, шин для автомобилей, изоляционных материалов и многого другого. К примеру, сегодня модным украшением стал каучуковый браслет.

Шеллак для ногтей: что это, как носить, плюсы и минусы

Природа приготовила для человека много загадок. Их понимание всегда выводило цивилизацию на новый уровень. Так произошло и с каучуком. Ученым удалось не только исследовать уникальный материал, но и создать его искусственные аналоги, а вместе с тем — индустрию резиновых изделий.

Узнавайте обо всем первыми

Подпишитесь и узнавайте о свежих новостях Казахстана, фото, видео и других эксклюзивах.

Каучук. Виды и применение. Свойства и особенности

Каучук – эластомер натурального или синтетического происхождения, обладающий высокой степенью тягучести, диэлектрическими качествами и водонепроницаемостью. Он входит в состав резины, паронита и других материалов, широко применяемых в промышленности.

Где используется каучук

Невозможно представить современную промышленность без каучуков. Они входят в состав важных материалов, таких как:

  • Резина.
  • Эбонит.
  • Паронит.
  • Средства контрацепции.
  • Смолы.
  • Клей.
  • Эластичные пленки.
  • Искусственная кожа.
  • Обувные подошвы и т.д.

Львиная доля всех каучуков применяется для производства резины. Помимо них в состав входит сажа, выполняющая роль наполнителя. Каучуки работают как связующее. Они приобретают определенную твердость, но при этом остаются эластичными. За счет этого после растягивания изделия принимают свою изначальную форму. В качестве наполнителя также могут использоваться мел, тальк и другие материалы. Чтобы сделать из тягучего каучука резину, необходимо провести процесс вулканизации. Его суть заключается в нагреве массы с добавлением серы. Атомы каучука в таких условиях перестраивают свою структуру, и исходный материал превращается в резину.

Практически во всех сферах использования каучука применяется технология его вулканизации. Только после этого он приобретает те качества, за которые так ценится. Причем конечные свойства материалов, которые производятся из каучука, зависят от количества серы, которая включается в массу при вулканизации. Если ее 1-5%, то он получится мягким и эластичным. Если же ее концентрацию довести до 30%, то материал станет твердым. Это будет уже не резина, а эбонит. Даже банальная обувная подошва является чаще всего жестким видом резины, которая получена благодаря включению каучука.

Если выполнить смешивание каучука с асбестом, то получится паронит. Это листовой материал, который применяется для изготовления прокладок для двигателей внутреннего сгорания. Такой материал обладает высокой температурной устойчивостью. При этом он сохраняет определенную мягкостью. Это позволяет его применять для уплотнения соединения, к примеру между головкой блока цилиндров и корпусом двигателя. Такая прокладка обладает отличной стойкостью к нагреву, при этом она в достаточной мере сжимается, чтобы заполнить все неровности, и предотвратить разгерметизацию.

Что такое натуральный каучук

Изначально под каучуком подразумевался исключительно натуральный материал, который получают путем переработки сока растений группы каучуковых. Порядка 60% этой продукции используется для изготовления автомобильных шин. Так как материал имеет растительное происхождение, он является дефицитным, поэтому имеет соответственно высокую стоимость.

Для природного необработанного каучука, так называемого сырого, характерно окисление на воздухе Он вступает в химическую реакцию с кислородом, в результате чего начинает медленно разлагаться. Этот процесс называется старением. Разложение каучука происходит в момент нагрева до температуры больше +200°С.

Выращивание деревьев и травы, дающей сок для производства природного каучука, ведется во Вьетнаме, Бразилии, Китае, а также Таиланде и Малайзии. В других странах этому препятствуют местные климатические особенности. В свое время на заре открытия каучука в 1751 году, материал стал крайне интересным для тогдашней промышленности. По результатам изучения каучука появилось достаточно много способов его использования. Как следствие страны, на территории которых можно было выращивать необходимые для его производства деревья, получили серьезный экономический толчок. Существовало даже такое понятие как «каучуковая лихорадка», когда люди вкладывали свои сбережения в выкуп земель с целью выращивания плантации с каучуковыми деревьями на новых территориях. Это сопровождалось большими рисками, отложенной перспективой получения урожая сока, но большой экономической выгодой. Нужно отметить, что с изобретением искусственных каучуков надобность в натуральном упала, но по прежнему существует.

Читайте также:
Аминокислоты - формула, строение, свойства, применение, виды
Виды синтетического каучука

Более распространенным, чем натуральный, является синтетический каучук. В качестве сырья для его производства может использоваться уголь, нефть, природный газ. Это не один, а несколько видов материала, отличающихся между собой по ряду качеств, особенностях эксплуатации и прочим характеристикам. Одни виды синтетического каучука предназначены для производства резины, другие для узкоспециализированных задач.

Можно выделить такие виды искусственного каучука:
  • Изопрен.
  • Неопрен.
  • Бутадиеновый.
  • Бутадиен-метилстирольный.
  • Бутилкаучук.
  • Этилен-пропиленовый.
  • Бутадиен-нитрильный.
  • Хлоропреновый.
  • Силоксановый.
  • Фторкаучуки.
  • Тиоколы.

Изопреновые обладают всеми качествами, которые ставятся к подобным материалам. У них есть эластичность, прочность, отсутствие токопроводности и сопротивление к эффекту старения. При этом его не растворяют спирты и вода. Это могут сделать только щелочи и концентрированные кислоты. Из этого материала делают резиновые шины.

Бутадиеновый каучук отличается от остальных тем, что имеет достаточно низкую морозостойкость. По мере замерзания он становится жестче, теряет эластичность. После повышения температуры она возвращается. Все же эластичность каучука этого вида небольшая, поэтому он чаще применяется для изготовления твердых предметов.

Хлоропреновый отличается превосходной эластичностью. Кроме этого он весьма стойкий к ударам, порезам, и другому воздействию. Его не растворяет вода, бензин, спирт и прочие вещества. При этом недостатком хлоропрена является низкая морозостойкость. При замерзании материал строит кристаллическую решетку. В таком виде изделие из него будет твердым, при этом его становится сравнительно легко разорвать. Этот материал имеет очень широкое распространение в тех местах, где требуется химическая стойкость. Из него делают рукава, шланги для перекачки нефтепродуктов. Кроме этого это один из лучших материалов для изготовления защитных перчаток.

Бутилкаучук – это один из самых эластичных материалов. Он может очень сильно растягиваться. По этой причине из данного материала изготавливают специализированную мембрану для строительства садовых прудов. Она превосходит по степени растягивания любые другие материалы, которые могут применяться в этой же нише. Также бутилкаучук используют для изготовления прорезиненной одежды, шин, причем весьма высокого качества.

Также достаточно распространенный каучук бутадиен-нитрильный. Он ценится за высокую стойкость к воздействию бензином, дизельным топливом и маслом. Из него делают технические резиновые предметы, отличающимися стойкими к разным температурам. Также этот материал применяется при изготовлении пластмасс.

Свойства каучуков

Каучук это очень важный материал для изготовления изделий самого разного назначения, начиная от автомобильных шин и заканчивая презервативами. Из него делают аптечные жгуты, резиночки для денег, прокладки, колесные камеры, надувные лодки, мячи, игрушки и т.д.

Важные качества:
  • Эластичность.
  • Водонепроницаемость.
  • Ремонтопригодность.
  • Электроизоляционные свойства.
  • Низкая теплопроводность.
  • Гасит вибрации.
  • Минимальный коэффициент скольжения.

В первую очередь каучуки добавляются в различные материалы при их производстве, чтобы сделать те более эластичными. Этот связующий компонент обволакивает наполнитель. Поле этого в случае необходимости готовое изделие можно растягивать. По завершении воздействия оно примет первоначальную форму. При этом такого не произойдет, если в состав также включено большое количество серы. Она блокирует эластичность каучука.

Наличие каучука в составе любых материалов делает их автоматически стойкими к воде. При этом устойчивость к прочим жидкостям, в том числе и агрессивным, зависит исключительно от вида связующего. Одни синтетические каучуки растворяются в щелочах, другие в кислотах или спиртах.

Изделия, в которых имеется каучук, являются ремонтопригодными. Для их починки применяются специализированные клеевые составы, в которых также имеется аналогичное связующее. Особенно надежными являются клеи, которые предусматривают схватывание путем применения вулканизации. В таком случае после застывания они могут растягиваться так же, как и основание под ними.

Все материалы с добавлением каучука в состав автоматически становятся диэлектриками. Именно поэтому их зачастую применяют для производства гибкой изоляции, на электрические провода. Защитная экипировка для работы с электроприборами и линиями электропередач производится с добавлением каучука.

Также стоит отметить, что каучук и изделия из него имеет низкую теплопроводность. Именно поэтому зачастую можно встретить резиновые и прорезиненные ручки на сковородках, крышках кастрюль, инструментах, ножах.

Высокая эластичность каучука является причиной еще одного выраженного качества материала – вибрационная устойчивость. Из резины делают ножки, подушки под тяжелую технику, мебель и т.д. Материал, а точнее изделия из него, зачастую являются антискользящими. Они не выскальзывают из рук, к тому же отлично задерживают прочие предметы, которые о них трутся.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: