Лизосомы – строение и функции, где формируется в клетке

Научная электронная библиотека

§ 3.1.4. Строение клетки

Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).

Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения

Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.

1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.

Повреждение наружной оболочки приводит к гибели клетки (цитолиз).

2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране

участие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).

Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.

Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.

3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).

транспортировка питательных веществ и утилизация продуктов обмена клетки;

буферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;

поддержание тургора (упругость) клетки;

все биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.

4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).

Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления

Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.

При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери

Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.

Читайте также:
Кишечнополостные - разнообразие типа, роль и значение в природе

В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.

В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.

Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.

– хранение генетической информации;

– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.

4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.

Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.

5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.

Функция рибосом: обеспечение биосинтеза белка.

6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).

Функции эндоплазматической сети:

– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;

– транспортировка продуктов синтеза ко всем частям клетки.

Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).

7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).

Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент

Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1

При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:

АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.

Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.

АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].

Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).

Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).

Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!

Читайте также:
Дикорастущие растения виды и классы, примеры трав, кустарников и деревьев с названиями, список лекарственных и ядовитых растений и их разновидности, вредители

8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.

Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.

9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).

Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.

10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:

Пластиды бывают трех типов:

1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.

2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.

3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).

Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.

11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.

Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:

– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);

– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;

– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).

Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).

Более общая классификация клеток представлена на рис. 3.16.

Читайте также:
Амёба, питание амебы обыкновенной, функции, форма тела, строение

Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.

Лизосомы – строение и функции, где формируется в клетке

Представлен сплющенными цистернами (или мешками), собранными в стопку. Каждая цистерна немного изогнута и имеет выпуклую и вогнутую поверхности. Средний диаметр цистерн составляет около 1 мкм. В центре цистерны ее мембраны сближены, а на периферии часто формируют расширения, или ампулы, от которых отшнуровываются пузырьки. Пакеты плоских цистерн количеством в среднем около 5-10 формируют диктиосому. Кроме цистерн, в комплексе Гольджи присутствуют транспортные и секреторные пузырьки.

В диктиосоме в соответствии с направлением кривизны изогнутых поверхностей цистерн различают две поверхности. Выпуклая поверхность называется незрелой, или цис-поверхностью. Она обращена к ядру или к канальцам гранулярной эндоплазматической сети и связана с последней пузырьками, отшнуровывающимися от гранулярной сети и приносящими молекулы белка в диктиосому на дозревание и оформление в мембрану.

Противоположная трансповерхность диктиосомы вогнута. Она обращена к плазмолемме и именуется зрелой потому, что от ее мембран отшнуровываются секреторные пузырьки, содержащие готовые к выведению из клетки продукты секреции.

Комплекс Гольджи участвует в накоплении продуктов, синтезированных в эндоплазматической сети, в их химической перестройке и созревании. В цистернах комплекса Гольджи происходит синтез полисахаридов, их комплексирование с белковыми молекулами. Одна из главных функций комплекса Гольджи — формирование готовых секреторных продуктов, которые выводятся за пределы клетки путем экзоцитоза. Важнейшими для клетки функциями комплекса Гольджи также являются обновление клеточных мембран, в том числе и участков плазмолеммы, а также замещение дефектов плазмолеммы в процессе секреторной деятельности клетки. Комплекс Гольджи считается источником образования первичных лизосом, хотя их ферменты синтезируются и в гранулярной сети.

Лизосомы представляют собой внутриклеточно формирующиеся секреторные вакуоли, заполненные гидролитическими ферментами, необходимыми для процессов фаго- и аутофагоцитоза. На светооптическом уровне лизосомы можно индентифицировать и судить о степени их развития в клетке по активности гистохимической реакции на кислую фосфатазу — ключевой лизосомальный энзим.

При электронной микроскопии лизосомы определяются как пузырьки, ограниченные от гиалоплазмы мембраной. Условно выделяют 4 основных вида лизосом: первичные и вторичные лизосомы, аутофагосомы и остаточные тельца.

Первичные лизосомы — это мелкие мембранные пузырьки (средний диаметр их составляет около 100 нм), заполненные гомогенным мелкодисперсным содержимым, представляющим собой набор гидролитических ферментов. В лизосомах идентифицированы около 40 ферментов (протеазы, нуклеазы, гликозидазы, фосфорилазы, сульфатазы), оптимальный режим действия которых рассчитан на кислую среду (рН 5). Лизосомальные мембраны содержат специальные белки-носители для транспорта из лизосомы в гиалоплазму продуктов гидролитического расщепления — аминокислот, Сахаров и нуклеотидов. Мембрана лизосом устойчива по отношению к гидролитическим ферментам.

Вторичные лизосомы образуются при слиянии первичных лизосом с эндоцитозными либо с пиноцитозными вакуолями. Иными словами, вторичные лизосомы — это внутриклеточные пищеварительные вакуоли, ферменты которых поставляются первичными лизосомами, а материал для переваривания — эндоцитозной (пиноцитозной) вакуолью. Строение вторичных лизосом весьма разнообразно и изменяется в процессе гидролитического расщепления содержимого. Ферменты лизосом расщепляют попавшие в клетку биологические вещества, в результате чего образуются мономеры, которые транспортируются через мембрану лизосомы в гиалоплазму, где утилизируются или включаются в разнообразные синтетические и метаболические реакции.

Если взаимодействию с первичными лизосомами и гидролитическому расщеплению их ферментами подвергаются собственные структуры клетки (стареющие органеллы, включения и пр.), формируется аутофагосома. Аутофагоцитоз является естественным процессом в жизнедеятельности клетки и играет большую роль в обновлении ее структур при внутриклеточной регенерации.

Читайте также:
Биологическое оружие: определение, классификация, применение, защита от него

Остаточные тельца это одна из финальных стадий существования фаго- и аутолизосом и обнаруживаются при незавершенном фаго- или аутофагоцитозе и впоследствии выделяются из клетки путем экзоцитоза. Они имеют уплотненное содержимое, часто наблюдается вторичная структуризация непереваренных соединений (например, липиды образуют сложные слоистые образования).

Строение, функции и виды лизосом

Лизосомы – это мембранные органеллы диаметром от 0,2 до 2,0мкм. Входят в состав эукариотической клетки, где находятся сотни лизосом. Главная их задача – это внутриклеточное переваривание (расщепление биополимеров), для этого органеллы имеют специальный набор гидролитических ферментов (сегодня известно около 60 видов). Ферментные вещества окружены замкнутой оболочкой, что предотвращает их проникновение внутрь клетки и ее разрушение.

Первые выявил лизосомы и занялся их изучением бельгийский ученый в области биохимии Кристианом де Дювом еще в 1955 году.

Особенности строения лизосом

Лизосомы имеют вид мембранных мешочков с кислым содержимым. По конфигурации бывают овальными или круглыми. Во всех клетках организма есть лизосомы, исключение – эритроциты.

Особым отличием лизосом от остальных органоидов является наличие во внутренней среде кислых гидролаз. Они обеспечивают распад веществ белковой природы, жиров, углеводов, а также нуклеиновых кислот.

К лизосомальным ферментам принадлежат фосфатазы (маркерный фермент), сульфатаза, фосфолипаза и многие другие. Оптимальная среда для нормальной работы органелл — кислая (pH = 4,5 — 5). При недостаточности ферментов или не эффективной их деятельности, ощелачивании внутренней среды, могут возникнуть лизосомальные болезни накопления (гликогенозы, мукополисахаридозы, болезнь Гоше, Тай-Сакса). Как следствие в клетке накапливаются непереваренные вещества: гликопротеиды, липиды и др.

Одномембранная оболочка лизосом оснащена транспортными белками, которые обеспечивают перенос из органеллы во внутреннюю среду клетки продуктов переваривания.

Строение лизосомы

Есть ли в растительной клетке лизосомы?

Нет. В клетках растений содержатся вакуоли – образования, заполненные соком и заключены в оболочку. Они образуются из провакуолей, отошедших от ЭПС и комплекса Гольджи. Клеточные вакуоли осуществляют ряд важных функций: накопление питательных веществ, поддержание тургора, переваривание органических веществ (что указывает на сходство между растительными вакуолями и лизосомами).

Где образуются лизосомы?

Формирование лизосом идет из пузырьков, отпочковавшихся от аппарата Гольджи. Для образования органелл необходимо также участие зернистой мембраны эндоплазматической сети. Все ферменты лизосом синтезируются рибосомами ЭПС, а затем направляются к аппарату Гольджи.

Виды лизосом

Различают два вида лизосом. Первичные лизосомы формируются возле аппарата Гольджи и содержат не активированные ферменты.

Вторичные лизосомы, или фагосомы имеют активированные ферменты, которые непосредственно взаимодействуют с расщепленными биополимерами. Как правило, ферменты лизосом активируются при изменении рН в кислую сторону.

Лизосомы также делятся на:

  • гетеролизосомы — переваривающие вещества, захваченные клеткой путём фагоцитоза (твердые частицы) или пиноцитоза (поглощение жидкости);
  • аутолизосомы — предназначены для разрушения собственных, внутриклеточных структур.

Функции лизосом в клетке

  • Внутриклеточное переваривание;
  • аутофагоцитоз;
  • аутолиз.

Внутриклеточное переваривание попавших в клетку в процессе эндоцитоза питательных соединений или чужеродных агентов (бактерий, вирусов и т.д.) осуществляется под действием лизосомальных ферментов.

После переваривания захваченного материала, продукты распада попадают в цитоплазму, непереваренные частицы остаются внутри органеллы, которая теперь носит название — остаточного тельца. При нормальных условиях тельца покидают клетку. В нервных клетках, которые имеют длительный жизненный цикл, за период существования накапливается множество остаточных телец, в которых содержится пигмент старения (не выводятся также при развитии патологии).

Аутофагоцитоз — расщепление клеточных структур, которые уже стали не нужны, например, во время формирования новых органелл, от старых клетка избавляется путем аутофагоцитоза.

Аутолиз — самоуничтожение клетки, которое приводит к её разрушению. Этот процесс не всегда носит патологический характер, а происходит в нормальных условиях развития индивидуума или при дифференцировке отдельных клеток.

Например: гибель клеток естественный процесс для нормально функционирующего организма, поэтому существует запрограммированная их смерть — апоптоз. Роль лизосом при апоптозе достаточно велика: гидролитические ферменты осуществляют переваривание отмерших клеток, и очищают организм от тех, что уже выполнили свою функцию.

При преобразовании головастика в зрелую особь, лизосомы, располагающиеся в клетках хвостовой части, расщепляют его, как следствие хвост исчезает, а продукты переваривания поглощаются остальными клетками тела.

Читайте также:
Злаковые растения - характеристика семейства, виды и признаки

Лизосомы – строение и функции, где формируется в клетке

228-229

Организация клетки. Лизосомы

А. Структура и состав

Лизосомы — это органеллы диаметром 0,2-2,0 мкм, окруженные простой мембраной, способные принимать самые разные формы. Обычно на клетку приходится несколько сотен лизосом. Функция лизосом заключается в деградации клеточных компонентов. Деградация достигается за счет присутствия в лизосомах около 40 типов различных расщепляющих ферментов — гидролаз с оптимумом действия в кислой области. Главный фермент лизосом — кислая фосфатаза. В мембране лизосом находятся АТФ-зависимые протонные насосы вакуольного типа. Они обогащают лизосомы протонами, вследствие чего для внутренней среды лизосом рН 4,5-5,0 (в то время как в цитоплазме рН 7,0-7,3). Лизосомные ферменты имеют оптимум рН около 5,0, т. е. в кислой области. При рН, близких к нейтральным, характерным для цитоплазмы, эти ферменты обладают низкой активностью. Очевидно, это служит механизмом защиты клеток от самопереваривания о том случае, если лизосомный фермент случайно попадет в цитоплазму.

Главная функция лизосом — ферментативная деградация попавших в них макромолекул и органелл. Примером может служить деградация отработавших митохондрий по механизму аутофагии (захвата органеллы) ( 1 ). После захвата органеллы первичные лизосомы превращаются во вторичные, в которых и идет процесс гидролитического расщепления ( 2 ). В итоге образуются «остаточные тела» , состоящие из негидролизовавшихся фрагментов. Лизосомы ответственны также за деградацию макромолекул и частиц, захваченных клетками путем эндоцитоза и фагоцитоза, например липопротеинов, протеогормонов и бактерий (гетерофагия). В этом случае лизосомы сливаются с эндосомами ( 3 ), содержащими вещества, подлежащие деградации.

В. Биосинтез и транспорт лизосомных белков

Первичные лизосомы образуются в аппарате Гольджи.

Лизосомные белки синтезируются в ШЭР, где они гликозилируются путем переноса олигосахаридных остатков ( 1 , см. с. 226). На последующей стадии, типичной для лизосомных белков, терминальные маннозные остатки (Man) фосфорилируются no C-6 (на схеме справа). Реакция протекает в две стадии. Сначала на белок переносится GlcNAc-фосфат, а затем идет отщепление GlcNAc. Таким образом, лизосомные белки в процессе сортировки приобретают концевой остаток маннозо-6-фосфата (Man-6-P, 2 ).

В мембранах аппарата Гольджи имеются молекулы-рецепторы, специфичные для Man-6-P-остатков и за счет этого специфически узнающие и селективно связывающие лизосомные белки ( 3 ). Локальное накопление этих белков происходит с помощью клатрина. Этот белок позволяет вырезать и транспортировать подходящие мембранные фрагменты в составе транспортных везикул к эндолизосомам ( 4 ), которые затем созревают с образованием первичных лизосом ( 5 ) в заключение от Man-6-P отщепляется фосфатная группа ( 6 ).

Man-6-P-рецепторы используются вторично в процессе рецикла. Снижение рН а эндолизосомах приводит к диссоциации белков от рецепторов ( 7 ). Затем рецепторы с помощью транспортных везикул переносятся обратно в аппарат Гольджи ( 8 ).

Некоторые редко встречающиеся заболевания связаны с генетическими дефектами лизосомных ферментов, так как эти ферменты участвуют в деградации гликогена (гликогенозы), липидов (липидозы) и протеогликанов (мукополисахаридозы). Продукты, которые не могут участвовать в метаболизме из-за дефектов или отсутствия соответствующих ферментов, накапливаются в остаточных телах, что приводит к необратимому повреждению клеток и как результат к нарушению функций соответствующих органов.

Лекция 6.. Лизосомы: структура и пути образования в клетке, классификация

Лизосомы: структура и пути образования в клетке, классификация.

Читайте также:
Биолюминесценция - что это такое, у каких живых организмов присутствует, как используется человеком

Лизосомы представляют собой гетерогенную (разнородную) группу цитоплазматических вакуолеподобных структур размером 1-3 мкм, отличительной особенностью которых является наличие в них кислой среды и большого количества различных гидролаз – ферментов способных расщеплять основные типы макромолекул. Присутствие в лизосомах гидролаз определяет их основную функцию в клетке – расщепление макромолекул и более крупных образований как поступающих в клетку из внеклеточного пространства так и имеющих внутриклеточное происхождение. Известны три возможных пути образования лизосом в клетке. В каждом случае образуются морфологически различные образования, расщепляющие материал из различных источников.

Рис. 6 Пути образования лизосом в клетке

В первом случае расщепляемый материал – белки, полинуклеотиды или полисахариды – попадает в клетку путем эндоцитоза. В ходе этого процесса молекулы, имеющие достаточно крупные размеры и неспособные проникать через мембраны, постепенно окружаются небольшим участком плазмалеммы, который сначала впячивается (инвагинируется), а затем отщепляется вовнутрь клетки, образуя пузырек, содержащий захваченный клеткой материал. Пузырьки образующиеся в результате эндоцитоза получили название эндосомы. По мере движения эндосомы от клеточной мембраны во внутрь клетки она многократно взаимодействует с транспортными пузырьками доставляющими от транс-поверхности аппарата Гольджи гидролитические ферменты и мембранные белки, превращаясь в эндолизосому. Процесс образования и трансформации эндосомы длится около 15 мин и сопровождается закислением внутренней среды, благодаря закачиванию ионов Н+из цитозоля во внутрь эндосомы АТФ-зависимым протонным насосом, функционирующим подобно АТФ -азе внутренней мембраны митохондрий.

Второй путь формирования лизосом называется аутофагией. В процессе аутофагии происходит разрушение отработанных частей самой клетки. Известно, например, что в клетках печени среднее время жизни одной митохондрии составляет около 10 дней, после чего она должна быть утилизирована в лизосомах. На электронных микрофотографиях нормальных клеток можно увидеть лизосомы содержащие митохондрии на разных стадиях деградации. Выше уже отмечалось, что путем аутофагии из клеток печени удаляется избыток гладкого ЭР, после прекращения поступления и выведения из организма ксенобиотиков – индукторов. Процесс аутофагии, по-видимому, начинается с окружения органеллы мембранами, поставляемыми из ЭР, в результате чего образуется аутофагосома. Затем, полагают, что аутофагосома сливается с эндолизосомой, образуя аутофаголизосому, в которой и происходит процесс деградации фрагмента ЭР или другой органеллы.

Третий путь формирования лизосом имеется только у клеток, специализированных для фагоцитоза больших частиц и микроорганизмов. Такие клетки-фагоциты, а к ним относятся клетки крови – нейтрофилы и моноциты, могут поглощать из внеклеточного пространства крупные объекты, образуя фагосомы. Далее фагосома превращается в фаголизосому тем же путем, что и аутофагосома, т.е. сливаясь с эндолизосомой.

Эндосомы, аутофагосомы и фагосомы часто называют общим термином – прелизосомы, а эндолизосомы, аутофаголизосомы и фаголизосомы термином лизосомы. В зрелых лизосомах происходит деградация поглощенного материала до отдельных молекул, например аминокислот, которые поступают в цитозоль и вовлекаются в последующие биохимические превращения. Фрагменты собственной плазматической мембраны не подвергаются воздействию гидролаз и возвращается обратно в плазмалемму с помощью транспортных пузырьков, еще до окончательного формирования лизосомы. Неперевариваемые продукты остаются и накапливаются в лизосомах, которые теряют гидролитические ферменты и превращаются в постлизосомы или остаточные тельца. С возрастом, в клетках человека и животных увеличивается количество остаточных телец, содержащих большое количество липофусцина или пигмента старения. Липофусцинпредставляет собой биополимеры различной природы, неподдающиеся дальнейшему расщеплению поскольку химические связи между отдельными мономерами образовались не в нормальных биохимических реакциях, а в результате спонтанных окислительных процессов, главным образом свободнорадикальных. Различные заболевания, воздействие радиации и других негативных факторов внешней среды ускоряют процесс накопления пигмента старения.

Одномембранные лизосомы

Вы будете перенаправлены на Автор24

Читайте также:
Где и как зимуют бабочки особенности процесса, куда прячутся бабочки в природе осенью и зимой, содержание в домашних условиях

Лизосомы – это одномембранные органеллы, которые обладают минимальным диаметром. Они входят в состав эукариотической клетки, где представлены сотнями.

Органеллы лизосомы

Главная задача лизосом — это осуществление внутриклеточного пищеварения, а именно расщепления биополимеров, благодаря специфическому набору гидролитических ферментов. Эти вещества окружаются замкнутой оболочкой, и такая черта не дает им проникнуть внутрь клетки и разрушить ее составные части. Кроме того, лизосомы могут способствовать естественной гибели клеток или ее частей, что также вполне оправдано естественным клеточным балансом.

Первые лизосомы были открыты бельгийским ученым – биохимиком К. Дювом в 1955 году.

Лизосомы обладают следующими особенностями строения:

  • имеют вид мембранных мешочков, содержание которых обладает кислой структурой;
  • конфигурация лизосом может быть округлой и овальной;
  • лизосомы представлены во всех клетках организма человека, кроме лизосом.

Существуют также и другие функции лизосом, которые только подтверждают их важность внутри процесса клеточного пищеварения.

Особенной чертой лизосом, которая отличает их от остальных органоидов можно признать наличие кислых гидролаз. Эти ферменты обеспечивают распад веществ белковой природы, а также жиров, углеводов и нуклеиновых кислот. Среди ферментов, содержащихся в лизосомах, можно выделить:

  • сульфатазу;
  • фосфолипазу и др.

Каждый из этих ферментов расщепляет особые группы органических веществ с разной скоростью. При этом каждая из них имеет важнейшее значение для осуществления комплекса реакций лизиса.

Основные функции лизосом

Лизис – это система расщепления внутриклеточных структур, которая позволяет своевременно избавляться от токсических веществ в клетке.

Готовые работы на аналогичную тему

Реакции лизиса достаточно многогранны, но в них присутствуют аутолиз и аутофагоцитоз.

Нормальной средой, которая обеспечивает оптимальную работу всех органелл считают кислую (pH = 4,5 — 5). Если среда клетки становится щелочной, то могут возникнуть определенные лизосомальные болезни. Следствием этого является накопление мукополисахаридов. Одномембранная оболочка лизосом оснащается транспортными белками, которые переносят из органеллы продукты пищеварения во внешне клеточную среду.

В растительной клетке лизосомы отсутствуют, и их функция осуществляется благодаря наличию вакуолей. Жидкость вакуолей содержит в себе определенный набор ферментов, которые ускоряют транспорт веществ. Лизосомы формируются из пузырьков при их отпочковании от аппарата Гольджи. В образовании органелл участвует также и зернистая мембрана и ЭПС. Все ферменты лизосом синтезируются рибосомами ЭПС, а затем направляются к аппарату Гольджи.

Существует несколько видов лизосом. Они бывают первичными и формируются возле аппарата Гольджи. Такие лизосомы содержат не активированные ферменты. Что касается вторичных лизосом, то они имеют активированные ферменты, непосредственно взаимодействующие с расщепленными биополимерами. Ферменты лизосом активируются в тот момент, когда вокруг них образуется кислая среда.

Все лизосомы делятся на:

  • гетеролизосомы или те лизосомы, которые переваривают вещества, которые клетка захватывает с помощью фагоцитоза (твердых частиц) или пиноцитоза (капель жидкости);
  • аутолизосомы предназначаются для разрушения различных внутриклеточных структур. Для поддержания оптимального обмена веществ клетке необходимы различные типы лизосом, поскольку в комплексе они дают клетке возможность избавиться от токсинов и предотвратить сложную степень отравления элементарной живой системы.

Лизосомы выполняют несколько функций внутри клетки, а именно внутриклеточное пищеварение, аутолиз, аутофагоцитоз. Переваривание веществ, которые попадают в клетку в ходе эндоцитоза, а также нейтрализация питательных соединений и чужеродных агентов реализуется именно лизосомальными ферментами.

Аутолиз – это процесс самоуничтожения клетки, который приводит к ее разрушению. Он не всегда бывает патологическим. А при нормальных условиях эта система способствует дифференцировке клеточных структур.

Аутофагоцитоз – это процесс расщепления клеточных структур, которые не нужны клетке, выполнили собственную функцию и должны быть удалены из нее.

Когда захваченный материал переваривается, он попадает в цитоплазму, а непереваренные остатки пищи остаются на месте, тем самым формируется остаточное тельце. При нормальных условиях тельца покидают клетку. В нервных клетках, которые имеют длительный жизненный цикл, за период существования накапливается множество остаточных телец, в которых содержится пигмент старения (не выводятся также при развитии патологии).

Читайте также:
Класс однодольные - характеристика и классификация, признаки

Примером работы лизосом можно назвать гибель клеток в естественном виде. Поскольку существует естественный процесс программы гибели клеток (апоптоз), то лизосомы функционируют и в этом процессе. Лизосомы обеспечивают действие гидролитических ферментов при переваривании отмерших клеток. Таким образом происходит очищение клетки от структур, которые уже выполнили собственную функцию.

Примером работы лизосом внутри многоклеточных структур может служить следующее: при преобразовании головастика в зрелую особь, лизосомы, располагающиеся в клетках хвостовой части, расщепляют его, как следствие хвост исчезает, а продукты переваривания поглощаются остальными клетками тела.

Подводя итог всему вышесказанному, можно сделать вывод о том, что лизосомы являются важнейшим компонентом клеток, они дают возможность наладить обмен веществ внутри них и обеспечить гомеостаз. Кроме лизосом в клетках присутствуют такие одномембранные органоиды как эндоплазматическая сеть, вакуоли, комплекс Гольджи и пр. Каждый одномембранный органоид имеет собственное уникальное значение и функционирует совершенно особенно, но при этом все они взаимосвязаны и являются производными клеточной мембраны.

Лизосома

Лизосо́ма — (от греч. λύσις — растворяю и sōma — тело) клеточный органоид размером 0,2 — 0,4 мкм, один из видов везикул. Эти одномембранные органоиды — часть вакуома (эндомембранной системы клетки). Разные виды лизосом могут рассматриваться как отдельные клеточные компартменты.

Содержание

Распространенность среди царств живой природы

Лизосомы были впервые описаны в 1955 году Кристианом де Дювом в животной клетке, а позже были обнаружены и в растительной. У растений к лизосомам по способу образования, а отчасти и по функциям близки вакуоли. Лизосомы есть также у большинства протистов (как с фаготрофным, так и с осмотрофным типом питания) и у грибов. Таким образом, наличие лизосом характерно для клеток всех эукариот. У прокариот лизосомы отсутствуют, так как у них отсутствует фагоцитоз и нет внутриклеточного пищеварения.

Признаки лизосом

Один из признаков лизосом — наличие в них ряда ферментов (кислых гидролаз), способных расщеплять белки, углеводы, липиды и нуклеиновые кислоты. К числу ферментов лизосом относятся катепсины (тканевые протеазы), кислая рибонуклеаза, фосфолипаза и др. Кроме того, в лизосомах присутствуют ферменты, которые способны отщеплять от органических молекул сульфатные (сульфатазы) или фосфатные (кислая фосфатаза) группы.

Для лизосом характерна кислая реакция внутренней среды. Обычно pH в лизосомах составляет около 4,5-5 (концентрация протонов на два порядка выше, чем в цитоплазме). Это обеспечивается активным транспортом протонов, который осуществляет встроенный в мембраны лизосом белок-насос протонная АТФаза.

Высокая активность кислой фосфатазы ранее использовалась как один из маркеров лизосом. В настоящее время более надежным маркером считается присутствие специфических мембранных гликопротеидов — LAMP1 и LAMP2. Они присутствуют на мембране лизосом и поздних эндосом, но отсутствуют на мембранах других компартментов вакуома.

Образование лизосом и их типы

Лизосомы формируются из пузырьков (везикул), отделяющихся от аппарата Гольджи, и пузырьков (эндосом), в которые попадают вещества при эндоцитозе. В образовании аутолизосом (аутофагосом) принимают участие мембраны эндоплазматического ретикулума. Все белки лизосом синтезируются на «сидячих» рибосомах на внешней стороне мембран эндоплазматического ретикулума и затем проходят через его полость и через аппарат Гольджи.

Лизосомы — гетерогенные органеллы, имеющие разную форму, размеры, ультраструктурные и цитохимические особенности. «Типичные» лизосомы животных клеток обычно имеют размеры 0,1-1 мкм, сферическую или овальную форму. Число лизосом варьирует от одной (крупная вакуоль во многих клетках растений и грибов) до нескольких сотен или тысяч (в клетках животных).

Читайте также:
Рибосомы - особенности строения, химический состав, функции

Общепринятой классификации и номенклатуры для разных стадий созревания и типов лизосом нет. Различают первичные и вторичные лизосомы. Первые образуются в области аппарата Гольджи, в них находятся ферменты в неактивном состоянии, вторые же содержат активные ферменты. Обычно ферменты лизосом активируются при понижении рН. Среди лизосом можно также выделить гетеролизосомы (переваривающие материал, поступающий в клетку извне — путем фаго- или пиноцитоза) и аутолизосомы (разрушающие собственные белки или органоиды клетки). Наиболее широко используется следующая классификация лизосом и связанных с ними компартментов:

  1. Ранняя эндосома — в нее поступают эндоцитозные (пиноцитозные) пузырьки. Из ранней эндосомы рецепторы, отдавшие (из-за пониженного рН) свой груз, возвращаются на наружную мембрану.
  2. Поздняя эндосома — в нее из ранней эндосомы поступают пузырьки с материалом, поглощенном при пиноцитозе, и пузырьки из аппарата Гольджи с гидролазами. Рецепторы маннозо-6-фосфата возвращаются из поздней эндосомы в аппарат Гольджи.
  3. Лизосома — в нее из поздней эндосомы поступают пузырьки со смесью гидролаз и перевариваемого материала.
  4. Фагосома — в нее попадают более крупные частицы (бактерии и т. п.), поглощенные путем фагоцитоза. Фагосомы обычно сливаются с лизосомой.
  5. Аутофагосома — окруженный двумя мембранами участок цитоплазмы, обычно включающий какие-либо органоиды и образующийся при макроаутофагии. Сливается с лизосомой.
  6. Мультивезикулярные тельца — обычно окружены одинарной мембраной, содержат внутри более мелкие окруженные одинарной мембраной пузырьки. Образуются в результате процесса, напоминающего микроаутофагию (см. ниже), но содержат материал, полученный извне. В мелких пузырьках обычно остаются и затем подвергаются деградации рецепторы наружной мембраны (например, рецепторы эпидермального фактора роста). По стадии формирования соответствуют ранней эндосоме. Описано образование мультивезикулярных телец, окруженных двумя мембранами, путем отпочковывания от ядерной оболочки.
  7. Остаточные тельца (телолизосомы) — пузырьки, содержащие непереваренный материал (в частности, липофусцин). В нормальных клетках сливаются с наружной мембраной и путем экзоцитоза покидают клетку. При старении или патологии накапливаются.

Функции лизосом

Функциями лизосом являются:

  • переваривание захваченных клеткой при эндоцитозе веществ или частиц (бактерий, других клеток)
  • аутофагия — уничтожение ненужных клетке структур, например, во время замены старых органоидов новыми, или переваривание белков и других веществ, произведенных внутри самой клетки
  • автолиз — самопереваривание клетки, приводящее к ее гибели (иногда этот процесс не является патологическим, а сопровождает развитие организма или дифференцировку некоторых специализированных клеток). Пример: При превращении головастика в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.
  • растворение внешних структур (см, например, остеокласты)

Внутриклеточное пищеварение и участие в обмене веществ

У многих протистов и у животных, имеющих внутриклеточное пищеварение, лизосомы участвуют в переваривании пищи, захваченной путем эндоцитоза. При этом лизосомы сливаются с пищеварительными вакуолями. У протистов непереваренные остатки пищи обычно удаляются из клетки при слиянии пищеварительной вакуоли с наружной мембраной.

Многие клетки животных, у которых преобладает полостное пищеварение (например, хордовые) получают питательные вещества из межклеточной жидкости или плазмы крови с помощью пиноцитоза. Эти вещества также вовлекаются в обмен веществ клетки после их переваривания в лизосомах. Хорошо изученный пример такого участия лизосом в обмене веществ — получение клетками холестерина. Холестерин, приносимый кровью в виде ЛПНП, поступает внутрь пиноцитозных везикул после соединения ЛПНП с рецепторами ЛПНП на мембране. Рецепторы возвращаются к мембране из ранней эндосомы, а ЛПНП поступают в лизосомы. После этого ЛПНП перевариваются, а высвободившийся холестерин через мембрану лизосом поступает в цитоплазму.

Читайте также:
Рибосомы - особенности строения, химический состав, функции

Косвенно лизосомы участвуют в обмене, обеспечивая десенсибилизацию клеток к воздействию гормонов. При длительном действии гормона на клетку часть рецепторов, связавших гормон, поступают в эндосомы и затем деградируют внутри лизосом. Снижение числа рецепторов понижает чувствительность клетки к гормону.

Для крупных вакуолей растений характерна запасающая функция — в них могут накапливаться ионы, пигменты (например, антоцианы), вторичные метаболиты, белки (в алейроновых зернах эндосперма злаков). Внутри вакуолей (например, в прорастающих семенах) у растений происхдят и процессы переваривания запасенных белков.

Аутофагия

Обычно различают два типа аутофагии — микроаутофагия и макроаутофагия. При микроаутофагии, как при образовании мультивезикулярных телец, образуются впячивания мембраны эндосомы или лизосомы, которые затем отделяются в виде внутренних пузырьков, только в них попадают вещества, синтезированные в самой клетке. Таким путем клетка может переваривать белки при нехватке энергии или строительного материала (например, при голодании). Но процессы микроаутофагии происходят и при нормальных условиях и в целом неизбирательны. Иногда в ходе микроаутофагии перевариваются и органоиды; так, у дрожжей описана микроаутофагия пероксисом и частичная микроаутофагия ядер, при которой клетка сохраняет жизнеспособность.

При макроаутофагии участок цитоплазмы (часто содержащий какие-либо органоиды) окружается мембранным компартментом, похожим на цистерну эндоплазматической сети. В результате этот участок оказывается отгорожен от остальной цитоплазмы двумя мембранами. Затем такая аутофагосома сливается с лизосомой, и ее содержимое переваривается. Видимо, макроаутофагия также неизбирательна, хотя часто подчеркивается, что с помощью нее клетка может избавляться от «отслуживших свой срок» органоидов (митохондрий, рибосом и др.).

Третий тип аутофагии — шаперон-зависимая. При этом способе происходит направленный транспорт частично денатурировавших белков из цитоплазмы сквозь мембрану лизосомы в ее полость.

Автолиз

Ферменты лизосом нередко высвобождаются при разрушении мембраны лизосомы. Обычно при этом они инактивируются в нейтральной среде цитоплазмы. Однако при одновременном разрушении всех лизосом клетки может произойти ее саморазрушение — автолиз. Различают патологический и обычный автолиз. Распространенный вариант патологического автолиза — посмертный автолиз тканей.

В норме процессы автолиза сопровождают многие явления, связанные с развитием организма и дифференцировкой клеток. Так, аутолиз клеток описывается как механизм разрушения тканей у личинок насекомых при полном превращении, а также при рассасывании хвоста у головастика. Правда, эти описания относятся к периоду, когда различия между апоптозом и некрозом еще не были установлены, и в каждом случае требуется выяснять, не лежит ли на самом деле в основе деградации органа или ткани апоптоз, не связанный с автолизом.

У растений автолизом сопровождается дифференциация клеток, которые функционируют после смерти (например, трахеид или члеников сосудов). Частичный автолиз происходит и при созревании клеток флоэмы- члеников ситовидных трубок.

Клиническое значение. Болезни, связанные с нарушением работы лизосом

Иногда из-за неправильной работы лизосом развиваются болезни накопления, при которых ферменты из-за мутаций не работают или работают плохо. Примером болезней накопления может служить амавротическая идиотия при накоплении гликогена.

Разрыв лизосомы и выход в гиалоплазму расщепляющих ферментов сопровождается резким повышением их активности. Такого рода повышение активности ферментов наблюдается, например, в очагах некроза при инфаркте миокарда и при действии излучения.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: