Модуль числа – как решать уравнения, свойства, знак, график в алгебре

Обобщённое понятие модуля числа

В данном уроке мы рассмотрим понятие модуля числа более подробно.

Что такое модуль?

Модуль — это расстояние от начала координат до какого-нибудь числа на координатной прямой. Поскольку расстояние не бывает отрицательным, то и модуль всегда неотрицателен. Так, модуль числа 3 равен 3, как и модуль числа −3 равен 3

Предстáвим, что на координатной прямой расстояние между целыми числами равно одному шагу. Теперь если отметить числа −3 и 3, то расстояние до них от начала координат будет одинаково равно трём шагам:

Модуль это не только расстояние от начала координат до какого-нибудь числа. Модуль это также расстояние между любыми двумя числами на координатной прямой. Такое расстояние выражается в виде разности между этими числами, заключенной под знак модуля:

Где x1 и x2 — числа на координатной прямой.

Например, отметим на координатной прямой числа 2 и 5.

Расстояние между числами 2 и 5 можно записать с помощью модуля. Для этого запишем разность из чисел 2 и 5 и заключим эту разность под знак модуля:

Видим, что расстояние от числа 2 до числа 5 равно трём шагам:

Если расстояние от 2 до 5 равно 3, то и расстояние от 5 до 2 тоже равно 3

То есть, если в выражении |5 − 2| поменять числа местами, то результат не изменится:

Тогда можно записать, что |2 − 5| = |5 − 2|. Вообще, справедливо следующее равенство:

Это равенство можно прочитать так: Расстояние от x1 до x2 равно расстоянию от x2 до x1.

Раскрытие модуля

Когда мы говорим, что |3|= 3 или |−3|= 3 мы выполняем действие называемое раскрытием модуля.

Правило раскрытия модуля выглядит так:

Такую запись мы ранее не использовали. Дело в том, что равенство можно задавать несколькими формулами. Фигурная скобка указывает, что возможны два случая в зависимости от условия. В данном случае условиями являются записи «если x ≥ 0» и «если x .

В зависимости от того что будет подставлено вместо x, выражение |x| будет равно x, если подставленное число больше или равно нулю. А если вместо x подставлено число меньшее нуля, то выражение |x| будет равно −x.

Второй случай на первый взгляд может показаться противоречивым, поскольку запись |x| = −x выглядит будто модуль стал равен отрицательному числу. Следует иметь ввиду, что когда x

Пример 2. Пусть x = 5. То есть мы рассматриваем модуль числа 5

В данном случае выполняется первое условие x ≥ 0, ведь 5 ≥ 0

Поэтому используем первую формулу. А именно | x | = x. Получаем | 5 | = 5.

Пример 3. Пусть x = √4 − 6. То есть мы рассматриваем модуль выражения √4 − 6,

Корень из числа 4 равен 2. Тогда модуль примет вид

x который был равен √4−6 теперь стал равен −4. В данном случае выполняется второе условие x |√4 − 6| = |2 − 6| = |−4| = −(−4) = 4

На практике обычно рассуждают так:

«Модуль раскрывается со знаком плюс, если подмодульное выражение больше или равно нулю; модуль раскрывается со знаком минус, если подмодульное выражение меньше нуля».

Примеры:

|2| = 2 — модуль раскрылся со знаком плюс, поскольку 2 ≥ 0

|−4| = −(−4) = 4 — модуль раскрылся со знаком минус, поскольку −4 x ≥ 0 расписано подробнее, а именно сказано что если x > 0 , то выражение |x| будет равно x , а если x =0, то выражение |x| будет равно нулю.

Пример 4. Пусть x = 0. То есть мы рассматриваем модуль нуля:

В данном случае выполняется условие x=0, ведь 0 = 0

Пример 5. Раскрыть модуль в выражении |x|+ 3

Если x ≥ 0, то модуль раскроется со знаком плюс, и тогда исходное выражение примет вид x + 3.

Допустим, требуется найти значение выражения |x|+ 3 при x = 5. Поскольку 5 ≥ 0, то модуль, содержащийся в выражении |x|+ 3 раскрóется со знаком плюс и тогда решение примет вид:

Найдём значение выражения |x|+ 3 при x = −6. Поскольку −6 |x| + 3 = 3 − x = 3 − (−6) = 9

Пример 6. Раскрыть модуль в выражении x +|x + 3|

Если x + 3 ≥ 0, то модуль |x + 3| раскроется со знаком плюс и тогда исходное выражение примет вид x + x + 3 , откуда 2x + 3.

Найдём значение выражения x +|x + 3| при x = 4. Поскольку 4 ≥ −3, то согласно нашему решению модуль выражения x +|x + 3| раскрывается со знаком плюс, и тогда исходное выражение принимает вид 2x+3, откуда подставив 4 получим 11

Найдём значение выражения x +|x + 3| при x=−3.

Поскольку −3 ≥ −3 , то согласно нашему решению модуль выражения x +|x + 3| раскрывается со знаком плюс, и тогда исходное выражение принимает вид 2x+3, откуда подставив −3 получим −3

Пример 3. Раскрыть модуль в выражении

Как и прежде используем правило раскрытия модуля:

Но это решение не будет правильным, поскольку в первом случае написано условие x ≥ 0 , которое допускает что при x = 0 знаменатель выражения обращается в ноль, а на ноль делить нельзя.

В данном примере удобнее использовать подробную запись правила раскрытия модуля, где отдельно рассматривается случай при котором x = 0

Перепишем решение так:

В первом случае написано условие x > 0 . Тогда выражение станет равно 1. Например, если x = 3 , то числитель и знаменатель станут равны 3, откуда полýчится 1

И так будет при любом x , бóльшем нуля.

Во втором случае написано условие x = 0 . Тогда решений не будет, потому что на ноль делить нельзя.

В третьем случае написано условие x . Тогда выражение станет равно −1 . Например, если x = −4 , то числитель станет равен 4 , а знаменатель −4 , откуда полýчится единица −1

Пример 4. Раскрыть модуль в выражении

Если x ≥ 0 , то модуль, содержащийся в числителе, раскроется со знаком плюс, и тогда исходное выражение примет вид , которое при любом x , бóльшем нуля, будет равно единице:

Если x , то модуль раскроется со знаком минус, и тогда исходное выражение примет вид

Но надо учитывать, что при x = − 1 знаменатель выражения обращается в ноль. Поэтому второе условие x следует дополнить записью о том, какие значения может принимать x

Преобразование выражений с модулями

Модуль, входящий в выражение, можно рассматривать как полноценный множитель. Его можно сокращать и выносить за скобки. Если модуль входит в многочлен, то его можно сложить с подобным ему модулем.

Как и у обычного буквенного множителя, у модуля есть свой коэффициент. Например, коэффициентом модуля |x| является 1, а коэффициентом модуля −|x| является −1. Коэффициентом модуля 3|x+1| является 3, а коэффициентом модуля −3|x+1| является −3.

Пример 1. Упростить выражение |x| + 2|x| − 2x + 5y и раскрыть модуль в получившемся выражении.

Решение

Выражения|x| и 2|x| являются подобными членами. Слóжим их. Остальное оставим без изменений:

Раскроем модуль в получившемся выражении. Если |x| ≥ 0, то получим 3x − 2x + 5y , откуда x + 5y .

Если |x| , то получим −3x − 2x + 5y , откуда −5x + 5y . Вынесем за скобки множитель −5 , получим −5(x − y)

В итоге имеем следующее решение:

Пример 2. Раскрыть модуль в выражении: −|x|

Решение

В данном случае перед знаком модуля стоит минус. Его можно понимать как минус единицу перед знаком модуля. Если x ≥ 0 , то модуль раскроется со знаком плюс, и тогда исходное выражение примет вид −x

Если x , то модуль раскроется со знаком минус, и тогда исходное выражение примет вид −(−x) откуда получим просто x

Решение уравнений с модулем в курсе математики 7-8 класса

Практически каждый учитель знает, какие проблемы вызывают у учащихся задания, содержащие модуль. Это один из самых трудных материалов, с которыми школьники сталкиваются на экзаменах.

Выбор темы обусловлен тем, что, во-первых, задачи, связанные с абсолютными величинами, часто встречаются на математических олимпиадах и на экзаменах, во-вторых, это понятие широко применяется не только в различных разделах школьного курса математики, но и в курсе высшей математики. Так в математическом анализе понятие абсолютной величины числа используется при определении основных понятий: предела, ограниченности функции и других. В теории приближенных вычислений употребляется понятие абсолютной погрешности. В механике, в геометрии изучается понятие вектора, одной из характеристик которого служит его длина (модуль вектора).
Несмотря на то, что тема «Модуль числа» проходит «красной нитью» через весь курс школьной и высшей математики, для ее изучения по программе отводится очень мало времени (в 6 классе -2 часа, в 8 классе – 4 часа).

Исходя из всего вышесказанного, учителю необходимо находить разнообразные методические приемы, использовать различные подходы и методы в обучении решению задач с модулем. Разнообразие методов будет способствовать сознательному усвоению математических знаний, вовлечению учащихся в творческую деятельность, а также решению ряда методических задач, встающих перед учителем в процессе обучения, в частности, реализации внутрипредметных связей (алгебра-геометрия), расширению области использования графиков, повышению графической культуры учеников.

Указанные обстоятельства обусловили выбор темы творческой работы. Цель работы: показать необходимость более глубокого рассмотрения темы «Решение уравнений с модулем» в школьной программе; разработать методические рекомендации по использованию различных методов при решении задач с модулем. §1. Основные способы, используемые при решении уравнений, содержащих модуль.

Напомним основные понятия, используемые в данной теме. Уравнением с одной переменной называют равенство, содержащее переменную. Корнями уравнения называются значения переменной, при которых уравнение обращается в верное равенство. Решить уравнение – значит, найти все его корни или доказать, что корней нет. Уравнением с модулем называют равенство, содержащее переменную под знаком модуля.

При решении уравнений, содержащих знак абсолютной величины, мы будем основываться на определении модуля числа и свойствах абсолютной величины числа.

Существует несколько способов решения уравнений с модулем. Рассмотрим подробнее каждый из них.

1 способ. Метод последовательного раскрытия модуля.

Пример 1. Решим уравнение |х-5|=4.

Исходя из определения модуля, произведем следующие рассуждения. Если выражение, стоящее под знаком модуля неотрицательно, то есть х-5≥0, то уравнение примет вид х-5=4. Если значение выражения под знаком модуля отрицательно, то по определению оно будет равно – (х-5)=4 или х-5= -4. Решая полученные уравнения, находим: х1=9, х2=1.
Ответ: 9; 1.
Решим этим же способом уравнение, содержащее «модуль в модуле».

Пример 2. Решим уравнение ||2х-1|-4|=6.

Рассуждая аналогично, рассмотрим два случая.
1). |2х-1|-4=6, |2х-1|=10. Используя еще раз определение модуля, получим: 2х-1=10 либо 2х-1= -10. Откуда х1=5,5, х2= -4,5.
2). |2х-1|-4= -6, |2х-1|= -2. Понятно, что в этом случае уравнение не имеет решений, так как по определению модуль всегда неотрицателен.
Ответ: 5,5; -4,5.
2 способ. Метод интервалов.
Опорная информация:

Метод интервалов – это метод разбиения числовой прямой на промежутки, в которых по определению модуля знак абсолютной величины можно будет снять. Для каждого из промежутков необходимо решить уравнение и сделать вывод относительно получившихся корней. Корни, удовлетворяющие промежуткам, и дадут окончательный ответ.

Пример 3. Решим уравнение |х+3|+|х-1|=6.
Найдем корни (нули) каждого выражения, содержащегося под знаком модуля: х+3=0, х= -3; х-1=0, х=1. Эти значения х разбивают числовую прямую на три промежутка:
-3 1

Решим уравнение отдельно в каждом из получившихся промежутков. В первом промежутке (х Давыдова Наталья Александровна 12.06.2011 231908 0

Угол между двумя прямыми

Буду кратким. Угол между двумя прямыми равен углу между их направляющими векторами. Таким образом, если вам удастся найти координаты направляющих векторов a = (x1; y1; z1) и b = (x2; y2; z2), то сможете найти угол. Точнее, косинус угла по формуле:

Посмотрим, как эта формула работает на конкретных примерах:

Задача. В кубе ABCDA1B1C1D1 отмечены точки E и F — середины ребер A1B1 и B1C1 соответственно. Найдите угол между прямыми AE и BF.

Поскольку ребро куба не указано, положим AB = 1. Введем стандартную систему координат: начало в точке A, оси x, y, z направим вдоль AB, AD и AA1 соответственно. Единичный отрезок равен AB = 1. Теперь найдем координаты направляющих векторов для наших прямых.

Найдем координаты вектора AE. Для этого нам потребуются точки A = (0; 0; 0) и E = (0,5; 0; 1). Поскольку точка E — середина отрезка A1B1, ее координаты равны среднему арифметическому координат концов. Заметим, что начало вектора AE совпадает с началом координат, поэтому AE = (0,5; 0; 1).

Теперь разберемся с вектором BF. Аналогично, разбираем точки B = (1; 0; 0) и F = (1; 0,5; 1), т.к. F — середина отрезка B1C1. Имеем:
BF = (1 − 1; 0,5 − 0; 1 − 0) = (0; 0,5; 1).

Итак, направляющие векторы готовы. Косинус угла между прямыми — это косинус угла между направляющими векторами, поэтому имеем:

Задача. В правильной трехгранной призме ABCA1B1C1, все ребра которой равны 1, отмечены точки D и E — середины ребер A1B1 и B1C1 соответственно. Найдите угол между прямыми AD и BE.

Введем стандартную систему координат: начало координат в точке A, ось x направим вдоль AB, z — вдоль AA1. Ось y направим так, чтобы плоскость OXY совпадала с плоскостью ABC. Единичный отрезок равен AB = 1. Найдем координаты направляющих векторов для искомых прямых.

Для начала найдем координаты вектора AD. Рассмотрим точки: A = (0; 0; 0) и D = (0,5; 0; 1), т.к. D — середина отрезка A1B1. Поскольку начало вектора AD совпадает с началом координат, получаем AD = (0,5; 0; 1).

Теперь найдем координаты вектора BE. Точка B = (1; 0; 0) считается легко. С точкой E — серединой отрезка C1B1 — чуть сложнее. Имеем:

Осталось найти косинус угла:

Задача. В правильной шестигранной призме ABCDEFA1B1C1D1E1F1, все ребра которой равны 1, отмечены точки K и L — середины ребер A1B1 и B1C1 соответственно. Найдите угол между прямыми AK и BL.

Введем стандартную для призмы систему координат: начало координат поместим в центр нижнего основания, ось x направим вдоль FC, ось y — через середины отрезков AB и DE, а ось z — вертикально вверх. Единичный отрезок снова равен AB = 1. Выпишем координаты интересующих нас точек:

Точки K и L — середины отрезков A1B1 и B1C1 соответственно, поэтому их координаты находятся через среднее арифметическое. Зная точки, найдем координаты направляющих векторов AK и BL:

Теперь найдем косинус угла:

Задача. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, отмечены точки E и F — середины сторон SB и SC соответственно. Найдите угол между прямыми AE и BF.

Введем стандартную систему координат: начало в точке A, оси x и y направим вдоль AB и AD соответственно, а ось z направим вертикально вверх. Единичный отрезок равен AB = 1.

Точки E и F — середины отрезков SB и SC соответственно, поэтому их координаты находятся как среднее арифметическое концов. Выпишем координаты интересующих нас точек:
A = (0; 0; 0); B = (1; 0; 0)

Зная точки, найдем координаты направляющих векторов AE и BF:

Координаты вектора AE совпадают с координатами точки E, поскольку точка A — начало координат. Осталось найти косинус угла:

Угол между прямыми

Определение угла между прямыми

Угол между прямыми на плоскости

Угол между прямыми заданными уравнениями с угловым коэффициентом

то угол между ними можно найти, используя формулу:

Если знаменатель равен нулю (1 + k 1· k 2 = 0), то прямые перпендикулярны.

Соответственно легко найти угол между прямыми

tg γ = tg ( α – β ) = tg α – tg β 1 + tg α ·tg β = k 1 – k 2 1 + k 1· k 2

Угол между прямыми через направляющие векторы этих прямых

cos φ = | a · b | | a | · | b |

Если уравнение прямой задано параметрически

x = l t + a y = m t + b

то вектор направляющей имеет вид

Если уравнение прямой задано как

то для вычисления направляющего вектора, можно взять две точки на прямой.
Например, если C ≠ 0, A ≠ 0, C ≠ 0 , при x = 0 => y = – C B значит точка на прямой имеет координаты K(0, – C B ), при y = 0 => x = – C A значит точка на прямой имеет координаты M(- C A , 0). Вектор направляющей KM = .

Если дано каноническое уравнение прямой

то вектор направляющей имеет вид

Если задано уравнение прямой с угловым коэффициентом

то для вычисления направляющего вектора, можно взять две точки на прямой, например, при x = 0 => y = b значит точка на прямой имеет координаты K(0, b ), при x = 1 => y = k + b значит точка на прямой имеет координаты M(1, k + b ). Вектор направляющей KM =

Угол между прямыми через векторы нормалей этих прямых

cos φ = | a · b | | a | · | b |

Если уравнение прямой задано как

то вектор нормали имеет вид

Если задано уравнение прямой с угловым коэффициентом

то вектор нормали имеет вид

Угол между прямыми через направляющий вектор и вектор нормали этих прямых

sin φ = | a · b | | a | · | b |

Примеры задач на вычисления угла между прямыми на плоскости

Решение: Воспользуемся формулой для вычисления угла между прямыми заданными уравнениями с угловым коэффициентом:

tg γ = k 1 – k 2 1 + k 1· k 2 = 2 – (-3) 1 + 2·(-3) = 5 -5 = 1

Ответ. γ = 45°

Решение: Воспользуемся формулой для вычисления угла между прямыми у которых известны направляющие векторы.

Для первой прямой направляющий вектор <1; 2>, для второй прямой направляющий вектор

cos φ = |1 · 2 + 2 · 1| 1 2 + 2 2 · 2 2 + 1 2 = 4 5 · 5 = 0.8

Ответ. φ ≈ 36.87°

Решение: Для решения этой задачи можно найти направляющие векторы и вычислить угол через направляющие векторы или преобразовать уравнения в уравнения с угловым коэффициентом и вычислить угол через угловые коэффициенты.

Преобразуем имеющиеся уравнения в уравнения с угловым коэффициентом.

2 x + 3 y = 0 => y = – 2 3 x ( k 1 = – 2 3 )

x – 2 3 = y 4 => y = 4 3 x – 8 3 ( k 2 = 4 3 )

tg γ = k 1 – k 2 1 + k 1· k 2 = – 2 3 – 4 3 1 + (- 2 3 )· 4 3 = – 6 3 1 – 8 9 = 18

Ответ. γ ≈ 86.82°

Угол между прямыми в пространстве

cos φ = | a · b | | a | · | b |

Если дано каноническое уравнение прямой

то направляющий вектор имеет вид

Если уравнение прямой задано параметрически

x = l t + a y = m t + b z = n t + c

то направляющий вектор имеет вид

Решение: Так как прямые заданы параметрически, то <2; 1; -1>– направляющий вектор первой прямой, <1; -2; 0>направляющий вектор второй прямой.

cos φ = |2 · 1 + 1 · (-2) + (-1) · 0| 2 2 + 1 2 + (-1) 2 · 1 2 + (-2) 2 + 0 2 = 0 6 · 5 = 0

Ответ. φ = 90°

Решение: Для решения этой задачи найдем направляющие векторы этих прямых.

Уравнение первой прямой задано в канонической форме, поэтому направляющий вектор <3; 4; 5>.

Преобразуем второе уравнение к каноническому вид.

1 – 3 y = 1 + y -1/3 = y – 1/3 -1/3

3 z – 5 2 = z – 5/3 2/3

Получено уравнение второй прямой в канонической форме

x – 2 -2 = y – 1/3 -1/3 = z – 5/3 2/3

<-2; - 1 3 ; 2 3 >– направляющий вектор второй прямой.

cos φ = 3·(-2) + 4·(- 1 3 ) + 5· 2 3 3 2 + 4 2 + 5 2 · (-2) 2 + (- 1 3 ) 2 + ( 2 3 ) 2 = -6 – 4 3 + 10 3 9 + 16 + 25 · 4 + 1 9 + 4 9 = -4 50 · 41/9 = 12 5 82 = 6 82 205

Угол между пересекающимися прямыми: определение, примеры нахождения

Данный материал посвящен такому понятию, как угол между двумя пересекающимися прямыми. В первом пункте мы поясним, что он из себя представляет, и покажем его на иллюстрациях. Потом разберем, какими способами можно найти синус, косинус этого угла и сам угол (отдельно рассмотрим случаи с плоскостью и трехмерным пространством), приведем нужные формулы и покажем на примерах, как именно они применяются на практике.

Что такое угол между пересекающимися прямыми

Для того чтобы понять, что такое угол, образующийся при пересечении двух прямых, нам потребуется вспомнить само определение угла, перпендикулярности и точки пересечения.

Мы называем две прямые пересекающимися, если у них есть одна общая точка. Эта точка называется точкой пересечения двух прямых.

Каждая прямая разделяется точкой пересечения на лучи. Обе прямые при этом образуют 4 угла, из которых два – вертикальные, а два – смежные. Если мы знаем меру одного из них, то можем определить и другие оставшиеся.

Допустим, нам известно, что один из углов равен α . В таком случае угол, который является вертикальным по отношению к нему, тоже будет равен α . Чтобы найти оставшиеся углы, нам надо вычислить разность 180 ° – α . Если α будет равно 90 градусам, то все углы будут прямыми. Пересекающиеся под прямым углом линии называются перпендикулярными (понятию перпендикулярности посвящена отдельная статья).

Взгляните на рисунок:

Перейдем к формулированию основного определения.

Угол, образованный двумя пересекающимися прямыми – это мера меньшего из 4 -х углов, которые образуют две эти прямые.

Из определения нужно сделать важный вывод: размер угла в этом случае будет выражен любым действительным числом в интервале ( 0 , 90 ] . Если прямые являются перпендикулярными, то угол между ними в любом случае будет равен 90 градусам.

Как найти угол между пересекающимися прямыми на плоскости

Умение находить меру угла между двумя пересекающимися прямыми полезно для решения многих практических задач. Метод решения можно выбрать из нескольких вариантов.

Для начала мы можем взять геометрические методы. Если нам известно что-то о дополнительных углах, то можно связать их с нужным нам углом, используя свойства равных или подобных фигур. Например, если мы знаем стороны треугольника и нужно вычислить угол между прямыми, на которых эти стороны расположены, то для решения нам подойдет теорема косинусов. Если у нас в условии есть прямоугольный треугольник, то для подсчетов нам также пригодится знание синуса, косинуса и тангенса угла.

Координатный метод тоже весьма удобен для решения задач такого типа. Поясним, как правильно его использовать.

У нас есть прямоугольная (декартова) система координат O x y , в которой заданы две прямые. Обозначим их буквами a и b . Прямые при этом можно описать с помощью каких-либо уравнений. Исходные прямые имеют точку пересечения M . Как определить искомый угол (обозначим его α ) между этими прямыми?

Начнем с формулировки основного принципа нахождения угла в заданных условиях.

Нам известно, что с понятием прямой линии тесно связаны такие понятия, как направляющий и нормальный вектор. Если у нас есть уравнение некоторой прямой, из него можно взять координаты этих векторов. Мы можем сделать это сразу для двух пересекающихся прямых.

Угол, образуемый двумя пересекающимися прямыми, можно найти с помощью:

  • угла между направляющими векторами;
  • ­угла между нормальными векторами;
  • угла между нормальным вектором одной прямой и направляющим вектором другой.

Теперь рассмотрим каждый способ отдельно.

1. Допустим, что у нас есть прямая a с направляющим вектором a → = ( a x , a y ) и прямая b с направляющим вектором b → ( b x , b y ) . Теперь отложим два вектора a → и b → от точки пересечения. После этого мы увидим, что они будут располагаться каждый на своей прямой. Тогда у нас есть четыре варианта их взаимного расположения. См. иллюстрацию:

Если угол между двумя векторами не является тупым, то он и будет нужным нам углом между пересекающимися прямыми a и b . Если же он тупой, то искомый угол будет равен углу, смежному с углом a → , b → ^ . Таким образом, α = a → , b → ^ в том случае, если a → , b → ^ ≤ 90 ° , и α = 180 ° – a → , b → ^ , если a → , b → ^ > 90 ° .

Исходя из того, что косинусы равных углов равны, мы можем переписать получившиеся равенства так: cos α = cos a → , b → ^ , если a → , b → ^ ≤ 90 ° ; cos α = cos 180 ° – a → , b → ^ = – cos a → , b → ^ , если a → , b → ^ > 90 ° .

Во втором случае были использованы формулы приведения. Таким образом,

cos α cos a → , b → ^ , cos a → , b → ^ ≥ 0 – cos a → , b → ^ , cos a → , b → ^ 0 ⇔ cos α = cos a → , b → ^

Запишем последнюю формулу словами:

Косинус угла, образованного двумя пересекающимися прямыми, будет равен модулю косинуса угла между его направляющими векторами.

Общий вид формулы косинуса угла между двумя векторами a → = ( a x , a y ) и b → = ( b x , b y ) выглядит так:

cos a → , b → ^ = a → , b → ^ a → · b → = a x · b x + a y· b y a x 2 + a y 2 · b x 2 + b y 2

Из нее мы можем вывести формулу косинуса угла между двумя заданными прямыми:

cos α = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2 = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

Тогда сам угол можно найти по следующей формуле:

α = a r c cos a x · b x + a y + b y a x 2 + a y 2 · b x 2 + b y 2

Здесь a → = ( a x , a y ) и b → = ( b x , b y ) – это направляющие векторы заданных прямых.

Приведем пример решения задачи.

В прямоугольной системе координат на плоскости заданы две пересекающиеся прямые a и b . Их можно описать параметрическими уравнениями x = 1 + 4 · λ y = 2 + λ λ ∈ R и x 5 = y – 6 – 3 . Вычислите угол между этими прямыми.

Решение

У нас в условии есть параметрическое уравнение, значит, для этой прямой мы сразу можем записать координаты ее направляющего вектора. Для этого нам нужно взять значения коэффициентов при параметре, т.е. прямая x = 1 + 4 · λ y = 2 + λ λ ∈ R будет иметь направляющий вектор a → = ( 4 , 1 ) .

Вторая прямая описана с помощью канонического уравнения x 5 = y – 6 – 3 . Здесь координаты мы можем взять из знаменателей. Таким образом, у этой прямой есть направляющий вектор b → = ( 5 , – 3 ) .

Далее переходим непосредственно к нахождению угла. Для этого просто подставляем имеющиеся координаты двух векторов в приведенную выше формулу α = a r c cos a x · b x + a y + b y a x 2 + a y 2 · b x 2 + b y 2 . Получаем следующее:

α = a r c cos 4 · 5 + 1 · ( – 3 ) 4 2 + 1 2 · 5 2 + ( – 3 ) 2 = a r c cos 17 17 · 34 = a r c cos 1 2 = 45 °

Ответ: данные прямые образуют угол в 45 градусов.

Мы можем решить подобную задачу с помощью нахождения угла между нормальными векторами. Если у нас есть прямая a с нормальным вектором n a → = ( n a x , n a y ) и прямая b с нормальным вектором n b → = ( n b x , n b y ) , то угол между ними будет равен углу между n a → и n b → либо углу, который будет смежным с n a → , n b → ^ . Этот способ показан на картинке:

Формулы для вычисления косинуса угла между пересекающимися прямыми и самого этого угла с помощью координат нормальных векторов выглядят так:

cos α = cos n a → , n b → ^ = n a x · n b x + n a y + n b y n a x 2 + n a y 2 · n b x 2 + n b y 2 α = a r c cos n a x · n b x + n a y + n b y n a x 2 + n a y 2 · n b x 2 + n b y 2

Здесь n a → и n b → обозначают нормальные векторы двух заданных прямых.

В прямоугольной системе координат заданы две прямые с помощью уравнений 3 x + 5 y – 30 = 0 и x + 4 y – 17 = 0 . Найдите синус, косинус угла между ними и величину самого этого угла.

Решение

Исходные прямые заданы с помощью нормальных уравнений прямой вида A x + B y + C = 0 . Нормальный вектор обозначим n → = ( A , B ) . Найдем координаты первого нормального вектора для одной прямой и запишем их: n a → = ( 3 , 5 ) . Для второй прямой x + 4 y – 17 = 0 нормальный вектор будет иметь координаты n b → = ( 1 , 4 ) . Теперь добавим полученные значения в формулу и подсчитаем итог:

cos α = cos n a → , n b → ^ = 3 · 1 + 5 · 4 3 2 + 5 2 · 1 2 + 4 2 = 23 34 · 17 = 23 2 34

Если нам известен косинус угла, то мы можем вычислить его синус, используя основное тригонометрическое тождество. Поскольку угол α , образованный прямыми, не является тупым, то sin α = 1 – cos 2 α = 1 – 23 2 34 2 = 7 2 34 .

В таком случае α = a r c cos 23 2 34 = a r c sin 7 2 34 .

Ответ: cos α = 23 2 34 , sin α = 7 2 34 , α = a r c cos 23 2 34 = a r c sin 7 2 34

Разберем последний случай – нахождение угла между прямыми, если нам известны координаты направляющего вектора одной прямой и нормального вектора другой.

Допустим, что прямая a имеет направляющий вектор a → = ( a x , a y ) , а прямая b – нормальный вектор n b → = ( n b x , n b y ) . Нам надо отложить эти векторы от точки пересечения и рассмотреть все варианты их взаимного расположения. См. на картинке:

Если величина угла между заданными векторами не более 90 градусов, получается, что он будет дополнять угол между a и b до прямого угла.

a → , n b → ^ = 90 ° – α в том случае, если a → , n b → ^ ≤ 90 ° .

Если он менее 90 градусов, то мы получим следующее:

a → , n b → ^ > 90 ° , тогда a → , n b → ^ = 90 ° + α

Используя правило равенства косинусов равных углов, запишем:

cos a → , n b → ^ = cos ( 90 ° – α ) = sin α при a → , n b → ^ ≤ 90 ° .

cos a → , n b → ^ = cos 90 ° + α = – sin α при a → , n b → ^ > 90 ° .

sin α = cos a → , n b → ^ , a → , n b → ^ ≤ 90 ° – cos a → , n b → ^ , a → , n b → ^ > 90 ° ⇔ sin α = cos a → , n b → ^ , a → , n b → ^ > 0 – cos a → , n b → ^ , a → , n b → ^ 0 ⇔ ⇔ sin α = cos a → , n b → ^

Чтобы найти синус угла между двумя прямыми, пересекающимися на плоскости, нужно вычислить модуль косинуса угла между направляющим вектором первой прямой и нормальным вектором второй.

Запишем необходимые формулы. Нахождение синуса угла:

sin α = cos a → , n b → ^ = a x · n b x + a y · n b y a x 2 + a y 2 · n b x 2 + n b y 2

Нахождение самого угла:

α = a r c sin = a x · n b x + a y · n b y a x 2 + a y 2 · n b x 2 + n b y 2

Здесь a → является направляющим вектором первой прямой, а n b → – нормальным вектором второй.

Две пересекающиеся прямые заданы уравнениями x – 5 = y – 6 3 и x + 4 y – 17 = 0 . Найдите угол пересечения.

Решение

Берем координаты направляющего и нормального вектора из заданных уравнений. Получается a → = ( – 5 , 3 ) и n → b = ( 1 , 4 ) . Берем формулу α = a r c sin = a x · n b x + a y · n b y a x 2 + a y 2 · n b x 2 + n b y 2 и считаем:

α = a r c sin = – 5 · 1 + 3 · 4 ( – 5 ) 2 + 3 2 · 1 2 + 4 2 = a r c sin 7 2 34

Обратите внимание, что мы взяли уравнения из предыдущей задачи и получили точно такой же результат, но другим способом.

Ответ: α = a r c sin 7 2 34

Приведем еще один способ нахождения нужного угла с помощью угловых коэффициентов заданных прямых.

У нас есть прямая a , которая задана в прямоугольной системе координат с помощью уравнения y = k 1 · x + b 1 , и прямая b , заданная как y = k 2 · x + b 2 . Это уравнения прямых с угловым коэффициентом. Чтобы найти угол пересечения, используем формулу:

α = a r c cos k 1 · k 2 + 1 k 1 2 + 1 · k 2 2 + 1 , где k 1 и k 2 являются угловыми коэффициентами заданных прямых. Для получения этой записи были использованы формулы определения угла через координаты нормальных векторов.

Есть две пересекающиеся на плоскости прямые, заданные уравнениями y = – 3 5 x + 6 и y = – 1 4 x + 17 4 . Вычислите величину угла пересечения.

Решение

Угловые коэффициенты наших прямых равны k 1 = – 3 5 и k 2 = – 1 4 . Добавим их в формулу α = a r c cos k 1 · k 2 + 1 k 1 2 + 1 · k 2 2 + 1 и подсчитаем:

α = a r c cos – 3 5 · – 1 4 + 1 – 3 5 2 + 1 · – 1 4 2 + 1 = a r c cos 23 20 34 24 · 17 16 = a r c cos 23 2 34

Ответ: α = a r c cos 23 2 34

В выводах этого пункта следует отметить, что приведенные здесь формулы нахождения угла не обязательно учить наизусть. Для этого достаточно знать координаты направляющих и/или нормальных векторов заданных прямых и уметь определять их по разным типам уравнений. А вот формулы для вычисления косинуса угла лучше запомнить или записать.

Как вычислить угол между пересекающимися прямыми в пространстве

Вычисление такого угла можно свести к вычислению координат направляющих векторов и определению величины угла, образованного этими векторами. Для таких примеров используются такие же рассуждения, которые мы приводили до этого.

Допустим, что у нас есть прямоугольная система координат, расположенная в трехмерном пространстве. В ней заданы две прямые a и b с точкой пересечения M . Чтобы вычислить координаты направляющих векторов, нам нужно знать уравнения этих прямых. Обозначим направляющие векторы a → = ( a x , a y , a z ) и b → = ( b x , b y , b z ) . Для вычисления косинуса угла между ними воспользуемся формулой:

cos α = cos a → , b → ^ = a → , b → a → · b → = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Для нахождения самого угла нам понадобится эта формула:

α = a r c cos a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

У нас есть прямая, заданная в трехмерном пространстве с помощью уравнения x 1 = y – 3 = z + 3 – 2 . Известно, что она пересекается с осью O z . Вычислите угол пересечения и косинус этого угла.

Решение

Обозначим угол, который надо вычислить, буквой α . Запишем координаты направляющего вектора для первой прямой – a → = ( 1 , – 3 , – 2 ) . Для оси аппликат мы можем взять координатный вектор k → = ( 0 , 0 , 1 ) в качестве направляющего. Мы получили необходимые данные и можем добавить их в нужную формулу:

cos α = cos a → , k → ^ = a → , k → a → · k → = 1 · 0 – 3 · 0 – 2 · 1 1 2 + ( – 3 ) 2 + ( – 2 ) 2 · 0 2 + 0 2 + 1 2 = 2 8 = 1 2

В итоге мы получили, что нужный нам угол будет равен a r c cos 1 2 = 45 ° .

Ответ: cos α = 1 2 , α = 45 ° .

Нахождение угла между прямыми

(blacktriangleright) Угол между прямыми – это такой угол (alpha) , что (0leqslant alphaleqslant 90^circ) .

(blacktriangleright) В пространстве существует 4 типа взаимного расположения прямых: совпадают, пересекаются, параллельны, скрещиваются.

(blacktriangleright) Скрещивающиеся прямые – это прямые, через которые нельзя провести одну плоскость.

Признак скрещивающихся прямых: если первая прямая пересекает плоскость, в которой лежит вторая прямая, в точке, не лежащей на второй прямой, то такие прямые скрещиваются.

(blacktriangleright) Порядок нахождения угла между скрещивающимися прямыми:

Шаг 1: через одну из двух прямых (a) провести плоскость, параллельную второй прямой (b) (напомним признак: прямая параллельна плоскости, если она параллельна какой-нибудь прямой из этой плоскости);

Шаг 2: в этой плоскости найти прямую (c) , параллельную прямой (b) ;

Шаг 3: тогда угол между прямыми (a) и (b) будет равен углу между прямыми (a) и (c) .

(ABCDA_1B_1C_1D_1) – куб. Найдите угол между прямыми, содержащими отрезки (AC) и (B_1D_1) . Ответ дайте в градусах.

Прямая (BD) параллельна прямой (B_1D_1) , тогда угол между (AC) и (B_1D_1) равен углу между (AC) и (BD) , но (AC) и (BD) – диагонали квадрата, тогда они пересекаются под прямым углом, следовательно ответ (90^) .

Дана правильная треугольная пирамида (SABC) с вершиной (S) . Найдите угол между высотой пирамиды и ребром (SB) , если высота пирамиды равна (2sqrt3) , а сторона основания пирамиды равна (6) . Ответ дайте в градусах.

Так как пирамида правильная, то в основании лежит правильный треугольник, следовательно, высота (SO) падает в точку пересечения медиан основания.

Пусть (BB_1) – медиана, а значит, и высота. По теореме Пифагора [BB_1=sqrt=3sqrt3 quadRightarrowquad BO=dfrac23BB_1=2sqrt3,] так как медианы точкой пересечения делятся в отношении (2:1) , считая от вершины.
Следовательно, прямоугольный (triangle SOB) является равнобедренным ( (SO=BO=2sqrt3) ), значит, острые углы равны по (45^circ) .

(ABCDA_1B_1C_1D_1) – куб. Точка (K) лежит на ребре (AA_1) . Найдите угол между прямыми, содержащими отрезки (D_1K) и (AB) . Ответ дайте в градусах.

Так как (ABCDA_1B_1C_1D_1) – куб, то (AB) перпендикулярен плоскости ((ADD_1)) , тогда (AB) перпендикулярен любой прямой, лежащей в плоскости ((ADD_1)) , следовательно, угол между прямыми, содержащими отрезки (D_1K) и (AB) равен (90^) .

Дан правильный тетраэдр (SABC) . Найдите квадрат тангенса угла между высотой грани (SAC) , опущенной из вершины (S) , и высотой грани (ABC) , опущенной из вершины (B) .

Пусть (SB_1) – высота грани (SAC) . Так как тетраэдр правильный, то все его грани – равные правильные треугольники, то есть (SB_1) также является и медианой, значит, (AB_1=B_1C) . Также у правильного тетраэдра высота из каждой вершины падает в точку пересечения медиан (биссектрис, высот) противоположной грани. Следовательно, если (SO) – высота, то (O) – точка пересечения медиан треугольника (ABC) , а значит и высот, так как (triangle ABC) правильный. Следовательно, (BB_1) — медиана и высота.

Таким образом, необходимо найти (mathrm^2angle (SB_1, BB_1)) .
Пусть (a) – ребро тетраэдра. Тогда (BC=a, B_1C=0,5a) , следовательно, по теореме Пифагора [BB_1=sqrt=dfrac2a] Так как (O) – точка пересечения медиан, а медианы точкой пересечения делятся в отношении (2:1) , считая от вершины, то (OB_1=frac13BB_1=frac6a) .

Так как (triangle ABC=triangle SAC) , то (SB_1=BB_1) . Следовательно, из прямоугольного (triangle SB_1O) : [cos alpha=dfrac=dfrac13 quadRightarrowquad sin alpha =sqrt<1-cos^2alpha>=dfrac<2sqrt2>3 quadRightarrowquad mathrm^2alpha=(2sqrt2)^2=8.]

Дан куб (ABCDA_1B_1C_1D_1) . Найдите угол между прямыми (AD_1) и (BD) . Ответ дайте в градусах.

Заметим, что (BC_1 || AD_1) , тогда рассмотрим треугольник (triangle BDC_1) , в котором необходимо определить (angle DBC_1) . Он состоит из диагоналей соответствующих квадратов. Так как квадраты между собой равны, то равны и диагонали (Rightarrow) (triangle BDC_1) – равносторонний треугольник (Rightarrow) (angle DBC_1 = 60^circ) .

Дан куб (ABCDA_1B_1C_1D_1) . Точка (K) – середина стороны (B_1C_1) , а точка (L) – середина стороны (C_1D_1) . Найдите угол между прямыми (AB_1) и (KL) . Ответ дайте в градусах.

Проведем диагональ (B_1D_1) в квадрате (A_1B_1C_1D_1) . Тогда (KL) – средняя линия в (triangle B_1C_1D_1) (Rightarrow) (KL || B_1D_1) (Rightarrow) (angle AB_1D_1) – искомый угол. Рассмотрим (triangle AB_1D_1) . Он состоит из диагоналей соответствующих квадратов (Rightarrow) треугольник является равносторонним (Rightarrow) (angle AB_1D_1 = 60^circ) .

Дана правильная треугольная пирамида (SABC) с вершиной (S) . Найдите косинус угла между высотой основания (AA_1) и ребром (SC) , если сторона основания равна (sqrt3) , а боковое ребро равно (2) .

Так как пирамида правильная, то в основании лежит правильный треугольник, следовательно, (AA_1) также является и медианой.

Заметим, что прямые (AA_1) и (SC) скрещиваются. Проведем (A_1Mparallel SC) , следовательно, (angle (AA_1, SC)=angle (AA_1, A_1M)) .
Так как (A_1Mparallel SC) и (A_1) – середина (BC) , то (M) – середина (SB) . Следовательно, (A_1M) – средняя линия и [A_1M=frac12SC=1.] По теореме Пифагора из (triangle ABA_1) : [AA_1=sqrt=dfrac32.] Медиану (AM) из (triangle SAB) можно найти по формуле медианы: [AM^2=dfrac<2AS^2+2AB^2-SB^2>4=dfrac52.] Следовательно, по теореме косинусов из (triangle AA_1M) : [cos alpha=dfrac<2AA_1cdot A_1M>=dfrac14=0,25.]

Каждому школьнику, который готовится к ЕГЭ по математике, будет полезно повторить тему «Нахождение угла между прямыми». Как показывает статистика, при сдаче аттестационного испытания задачи по данному разделу стереометрии вызывают трудности у большого количества учащихся. При этом задания, требующие найти угол между прямыми, встречаются в ЕГЭ как базового, так и профильного уровня. Это значит, что уметь их решать должны все.

Основные моменты

В пространстве существует 4 типа взаимного расположения прямых. Они могут совпадать, пересекаться, быть параллельными или скрещивающимися. Угол между ними может быть острым или прямым.

Для нахождения угла между прямыми в ЕГЭ или, например, в решении задач по теореме о трех перпендикулярах, школьники Москвы и других городов могут использовать несколько способов решения задач по данному разделу стереометрии. Выполнить задание можно путем классических построений. Для этого стоит выучить основные аксиомы и теоремы стереометрии. Школьнику нужно уметь логически выстраивать рассуждение и создавать чертежи, для того чтобы привести задание к планиметрической задаче.

Также можно использовать векторно-координатный метод, применяя простые формулы, правила и алгоритмы. Главное в этом случае — правильно выполнить все вычисления. Отточить свои навыки решения задач по стереометрии и другим разделам школьного курса вам поможет образовательный проект «Школково».

Угол между прямыми определение, формула нахождения между скрещивающимися прямыми, методы и примеры решения задач

Как найти угол между прямыми ? Пара прямых на плоскости может иметь несколько вариантов расположения относительно друг друга: полностью совпадать, быть параллельными друг другу и пересекающимися.

Одной из типичных геометрических задач является задача по нахождению угла между двумя пересекающимися линиями.

Определение угла между скрещивающимися прямыми

Пересечение двух линий на плоскости говорит о наличии у них одной общей точки. Она же является центром их пересечения и делит их на лучи.

Лучи формируют четыре угла, которые являются неразвернутыми. Зная о размере одного из них, можно вычислить значение и остальных. Точно можно утверждать, что если один из них – прямоугольный, то остальные три равнозначны ему, а линии будут перпендикулярными.

Рис. 1 Графическое отображение пересечения прямых


Как найти угол между скрещивающимися прямыми

Для определения угла между двумя скрещивающимися линиями можно воспользоваться специальным онлайн-калькулятором или применить традиционный математический алгоритм для вычислений.

Предположим, что две бесконечные линии задаются уравнениями общего вида:

Искомое значение следует обозначить как φ. Численная величина угла измеряется в градусах от 0 до 90°, т. е. угол будет острым или прямоугольным. Необходимо ввести еще одно понятие– угол ψ между нормальными векторами данных прямых:

Если он меньше, либо равен 90°, то непосредственно сам искомый угол будет соответствовать его градусной мере. В случае когда ψ больше 90°, для вычисления φ необходимо применить известную формулу:

Для обоих вариантов достоверно утверждение, что cos φ = lcos ψl. Выполнив необходимые вычисления, можно рассчитать искомое значение:

Если по условию задачи существует некий прямоугольный треугольник с известными сторонами, расположенными на двух прямых, то для вычисления угла между этими прямыми необходимо знать синус, тангенс и косинус искомого угла.

Для нахождения значения синуса угла, образованного в результате пересечения двух прямых, вычисляют модуль косинуса этого угла, образованного направляющими векторами данных прямых.

Пример решения задачи

На школьных уроках геометрии для решения в классе часто предлагается следующий вид задач по поиску угла между двумя прямыми.

Ниже приведем алгоритм решения задачи, при которой бесконечные линии на плоскости заданы уравнениями общего вида, в которых присутствует угловой коэффициент.

Обозначим прямые как (L1) и (L2). Каждая из них задается уравнением следующего вида:

А1х + В1у + С1 = 0;

А2х + В2у + С2 = 0;

Зная, что нормальные вектора каждой из них имеют вид:

Суть задачи сводится к вычислению угла φ, образованного нормальными векторами.

Используем определение скалярного произведения векторов:

и координатное выражение их длин, а также их скалярное произведение:

В практических задачах по математике часто требуется найти не сам угол между пресекающимися прямыми, а составить уравнение их всех, при условии, что прямые пересекаются между собой.

Так, если прямые заданы уравнениями общего вида с коэффициентами, то

Последнее равенство часто называют уравнением биссектрис углов, образованных в результате пересечения прямых. Понятие «биссектриса» в геометрии — это некое геометрическое место точек, которые удалены на одинаковое расстояние от сторон угла.

Если прямые задаются уравнениями, включающими угловой коэффициент, который определяется тангенсом угла, найти значение углов, образованных при их пересечении, достаточно просто:

Рис. 2 Углы, образованные пересечением двух прямых на плоскости

где k1 и k2 – те самые угловые коэффициенты.

Следовательно, чтобы вычислить значение γ, следует применить формулы:

tan γ = tan (α — β)

Читайте также:
Как построить высоту треугольника циркулем и угольником - алгоритм
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: